diff --git a/src/glow/common/array_view.hh b/src/glow/common/array_view.hh
index c9784a1564151f1b3b344ffa5a03a9803ef836af..7b8e49850bde2812e0ca05fc3783997fcfc2cc1e 100644
--- a/src/glow/common/array_view.hh
+++ b/src/glow/common/array_view.hh
@@ -81,6 +81,14 @@ struct array_view
 
     constexpr bool empty() const { return _size == 0; }
 
+    array_view<std::byte const> as_bytes() const
+    {
+#ifndef GLOW_HAS_GLM
+        static_assert(std::is_trivially_copyable_v<T>, "cannot make byte view for non-trivial type");
+#endif
+        return array_view<std::byte const>{reinterpret_cast<std::byte const*>(_data), _size * sizeof(T)};
+    }
+
 private:
     T* _data = nullptr;
     size_t _size = 0;
@@ -96,6 +104,20 @@ auto make_array_view(Range&& r)
 namespace detail
 {
 template <class Range>
-constexpr bool can_make_array_view = convertible_to_array_view<Range, void>;
+constexpr bool can_make_array_view = convertible_to_array_view<Range, void const>;
+}
+
+template <class T>
+array_view<std::byte const> as_byte_view(T const& v)
+{
+    if constexpr (detail::can_make_array_view<T const&>)
+        return make_array_view(v).as_bytes();
+    else
+    {
+#ifndef GLOW_HAS_GLM
+        static_assert(std::is_trivially_copyable_v<T>, "type must be trivial");
+#endif
+        return array_view<T const>(&v, 1).as_bytes();
+    }
 }
 }
diff --git a/src/glow/common/hash.cc b/src/glow/common/hash.cc
new file mode 100644
index 0000000000000000000000000000000000000000..25c520c979489c1ead86d3eed3d45eacf4028d24
--- /dev/null
+++ b/src/glow/common/hash.cc
@@ -0,0 +1,9 @@
+#include "hash.hh"
+
+#include <glow/detail/xxHash/xxh3.hh>
+
+size_t glow::hash_xxh3(array_view<const std::byte> data, size_t seed)
+{
+    //
+    return XXH3_64bits_withSeed(data.data(), data.size(), seed);
+}
diff --git a/src/glow/common/hash.hh b/src/glow/common/hash.hh
new file mode 100644
index 0000000000000000000000000000000000000000..df488a01f9196da8f17e22c09ad7dd9fda498370
--- /dev/null
+++ b/src/glow/common/hash.hh
@@ -0,0 +1,11 @@
+#pragma once
+
+#include <cstddef>
+
+#include <glow/common/array_view.hh>
+
+namespace glow
+{
+// returns a hash of the data by executing https://github.com/Cyan4973/xxHash
+[[nodiscard]] size_t hash_xxh3(array_view<std::byte const> data, size_t seed);
+}
diff --git a/src/glow/detail/xxHash/xxh3.hh b/src/glow/detail/xxHash/xxh3.hh
new file mode 100644
index 0000000000000000000000000000000000000000..94e3575f63a486b5c93822233a7c3fa80e2e1de1
--- /dev/null
+++ b/src/glow/detail/xxHash/xxh3.hh
@@ -0,0 +1,2372 @@
+/*
+ * xxHash - Extremely Fast Hash algorithm
+ * Development source file for `xxh3`
+ * Copyright (C) 2019-2020 Yann Collet
+ *
+ * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ *    * Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *    * Redistributions in binary form must reproduce the above
+ *      copyright notice, this list of conditions and the following disclaimer
+ *      in the documentation and/or other materials provided with the
+ *      distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You can contact the author at:
+ *   - xxHash homepage: https://www.xxhash.com
+ *   - xxHash source repository: https://github.com/Cyan4973/xxHash
+ */
+
+/*
+ * Note: This file is separated for development purposes.
+ * It will be integrated into `xxhash.h` when development stage is completed.
+ *
+ * Credit: most of the work on vectorial and asm variants comes from @easyaspi314
+ */
+
+#ifndef XXH3_H_1397135465
+#define XXH3_H_1397135465
+
+/* ===   Dependencies   === */
+#ifndef XXHASH_H_5627135585666179
+/* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
+#undef XXH_INLINE_ALL /* avoid redefinition */
+#define XXH_INLINE_ALL
+#endif
+#include "xxhash.hh"
+
+
+/* ===   Compiler specifics   === */
+
+#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
+#define XXH_RESTRICT restrict
+#else
+/* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
+#define XXH_RESTRICT /* disable */
+#endif
+
+#if (defined(__GNUC__) && (__GNUC__ >= 3)) || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) || defined(__clang__)
+#define XXH_likely(x) __builtin_expect(x, 1)
+#define XXH_unlikely(x) __builtin_expect(x, 0)
+#else
+#define XXH_likely(x) (x)
+#define XXH_unlikely(x) (x)
+#endif
+
+#if defined(__GNUC__)
+#if defined(__AVX2__)
+#include <immintrin.h>
+#elif defined(__SSE2__)
+#include <emmintrin.h>
+#elif defined(__ARM_NEON__) || defined(__ARM_NEON)
+#define inline __inline__ /* clang bug */
+#include <arm_neon.h>
+#undef inline
+#endif
+#elif defined(_MSC_VER)
+#include <intrin.h>
+#endif
+
+/*
+ * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
+ * remaining a true 64-bit/128-bit hash function.
+ *
+ * This is done by prioritizing a subset of 64-bit operations that can be
+ * emulated without too many steps on the average 32-bit machine.
+ *
+ * For example, these two lines seem similar, and run equally fast on 64-bit:
+ *
+ *   xxh_u64 x;
+ *   x ^= (x >> 47); // good
+ *   x ^= (x >> 13); // bad
+ *
+ * However, to a 32-bit machine, there is a major difference.
+ *
+ * x ^= (x >> 47) looks like this:
+ *
+ *   x.lo ^= (x.hi >> (47 - 32));
+ *
+ * while x ^= (x >> 13) looks like this:
+ *
+ *   // note: funnel shifts are not usually cheap.
+ *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
+ *   x.hi ^= (x.hi >> 13);
+ *
+ * The first one is significantly faster than the second, simply because the
+ * shift is larger than 32. This means:
+ *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
+ *    32 bits in the shift.
+ *  - The shift result will always fit in the lower 32 bits, and therefore,
+ *    we can ignore the upper 32 bits in the xor.
+ *
+ * Thanks to this optimization, XXH3 only requires these features to be efficient:
+ *
+ *  - Usable unaligned access
+ *  - A 32-bit or 64-bit ALU
+ *      - If 32-bit, a decent ADC instruction
+ *  - A 32 or 64-bit multiply with a 64-bit result
+ *  - For the 128-bit variant, a decent byteswap helps short inputs.
+ *
+ * The first two are already required by XXH32, and almost all 32-bit and 64-bit
+ * platforms which can run XXH32 can run XXH3 efficiently.
+ *
+ * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
+ * notable exception.
+ *
+ * First of all, Thumb-1 lacks support for the UMULL instruction which
+ * performs the important long multiply. This means numerous __aeabi_lmul
+ * calls.
+ *
+ * Second of all, the 8 functional registers are just not enough.
+ * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
+ * Lo registers, and this shuffling results in thousands more MOVs than A32.
+ *
+ * A32 and T32 don't have this limitation. They can access all 14 registers,
+ * do a 32->64 multiply with UMULL, and the flexible operand allowing free
+ * shifts is helpful, too.
+ *
+ * Therefore, we do a quick sanity check.
+ *
+ * If compiling Thumb-1 for a target which supports ARM instructions, we will
+ * emit a warning, as it is not a "sane" platform to compile for.
+ *
+ * Usually, if this happens, it is because of an accident and you probably need
+ * to specify -march, as you likely meant to compile for a newer architecture.
+ */
+#if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
+#warning "XXH3 is highly inefficient without ARM or Thumb-2."
+#endif
+
+/* ==========================================
+ * Vectorization detection
+ * ========================================== */
+#define XXH_SCALAR 0 /* Portable scalar version */
+#define XXH_SSE2 1   /* SSE2 for Pentium 4 and all x86_64 */
+#define XXH_AVX2 2   /* AVX2 for Haswell and Bulldozer */
+#define XXH_NEON 3   /* NEON for most ARMv7-A and all AArch64 */
+#define XXH_VSX 4    /* VSX and ZVector for POWER8/z13 */
+#define XXH_AVX512 5 /* AVX512 for Skylake and Icelake */
+
+#ifndef XXH_VECTOR /* can be defined on command line */
+#if defined(__AVX512F__)
+#define XXH_VECTOR XXH_AVX512
+#elif defined(__AVX2__)
+#define XXH_VECTOR XXH_AVX2
+#elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
+#define XXH_VECTOR XXH_SSE2
+#elif defined(__GNUC__) /* msvc support maybe later */                      \
+    && (defined(__ARM_NEON__) || defined(__ARM_NEON))                       \
+    && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
+        || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
+#define XXH_VECTOR XXH_NEON
+#elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) || (defined(__s390x__) && defined(__VEC__)) && defined(__GNUC__) /* TODO: IBM XL */
+#define XXH_VECTOR XXH_VSX
+#else
+#define XXH_VECTOR XXH_SCALAR
+#endif
+#endif
+
+/*
+ * Controls the alignment of the accumulator.
+ * This is for compatibility with aligned vector loads, which are usually faster.
+ */
+#ifndef XXH_ACC_ALIGN
+#if XXH_VECTOR == XXH_SCALAR /* scalar */
+#define XXH_ACC_ALIGN 8
+#elif XXH_VECTOR == XXH_SSE2 /* sse2 */
+#define XXH_ACC_ALIGN 16
+#elif XXH_VECTOR == XXH_AVX2 /* avx2 */
+#define XXH_ACC_ALIGN 32
+#elif XXH_VECTOR == XXH_NEON /* neon */
+#define XXH_ACC_ALIGN 16
+#elif XXH_VECTOR == XXH_VSX /* vsx */
+#define XXH_ACC_ALIGN 16
+#elif XXH_VECTOR == XXH_AVX512 /* avx512 */
+#define XXH_ACC_ALIGN 64
+#endif
+#endif
+
+/*
+ * UGLY HACK:
+ * GCC usually generates the best code with -O3 for xxHash.
+ *
+ * However, when targeting AVX2, it is overzealous in its unrolling resulting
+ * in code roughly 3/4 the speed of Clang.
+ *
+ * There are other issues, such as GCC splitting _mm256_loadu_si256 into
+ * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
+ * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
+ *
+ * That is why when compiling the AVX2 version, it is recommended to use either
+ *   -O2 -mavx2 -march=haswell
+ * or
+ *   -O2 -mavx2 -mno-avx256-split-unaligned-load
+ * for decent performance, or to use Clang instead.
+ *
+ * Fortunately, we can control the first one with a pragma that forces GCC into
+ * -O2, but the other one we can't control without "failed to inline always
+ * inline function due to target mismatch" warnings.
+ */
+#if XXH_VECTOR == XXH_AVX2                                  /* AVX2 */           \
+    && defined(__GNUC__) && !defined(__clang__)             /* GCC, not Clang */ \
+    && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+#pragma GCC push_options
+#pragma GCC optimize("-O2")
+#endif
+
+
+#if XXH_VECTOR == XXH_NEON
+/*
+ * NEON's setup for vmlal_u32 is a little more complicated than it is on
+ * SSE2, AVX2, and VSX.
+ *
+ * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
+ *
+ * To do the same operation, the 128-bit 'Q' register needs to be split into
+ * two 64-bit 'D' registers, performing this operation::
+ *
+ *   [                a                 |                 b                ]
+ *            |              '---------. .--------'                |
+ *            |                         x                          |
+ *            |              .---------' '--------.                |
+ *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
+ *
+ * Due to significant changes in aarch64, the fastest method for aarch64 is
+ * completely different than the fastest method for ARMv7-A.
+ *
+ * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
+ * D11 will modify the high half of Q5. This is similar to how modifying AH
+ * will only affect bits 8-15 of AX on x86.
+ *
+ * VZIP takes two registers, and puts even lanes in one register and odd lanes
+ * in the other.
+ *
+ * On ARMv7-A, this strangely modifies both parameters in place instead of
+ * taking the usual 3-operand form.
+ *
+ * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
+ * lower and upper halves of the Q register to end up with the high and low
+ * halves where we want - all in one instruction.
+ *
+ *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
+ *
+ * Unfortunately we need inline assembly for this: Instructions modifying two
+ * registers at once is not possible in GCC or Clang's IR, and they have to
+ * create a copy.
+ *
+ * aarch64 requires a different approach.
+ *
+ * In order to make it easier to write a decent compiler for aarch64, many
+ * quirks were removed, such as conditional execution.
+ *
+ * NEON was also affected by this.
+ *
+ * aarch64 cannot access the high bits of a Q-form register, and writes to a
+ * D-form register zero the high bits, similar to how writes to W-form scalar
+ * registers (or DWORD registers on x86_64) work.
+ *
+ * The formerly free vget_high intrinsics now require a vext (with a few
+ * exceptions)
+ *
+ * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
+ * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
+ * operand.
+ *
+ * The equivalent of the VZIP.32 on the lower and upper halves would be this
+ * mess:
+ *
+ *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
+ *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
+ *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
+ *
+ * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
+ *
+ *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
+ *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
+ *
+ * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
+ */
+
+/*
+ * Function-like macro:
+ * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
+ * {
+ *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
+ *     outHi = (uint32x2_t)(in >> 32);
+ *     in = UNDEFINED;
+ * }
+ */
+#if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
+    && defined(__GNUC__) && !defined(__aarch64__) && !defined(__arm64__)
+#define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                                          \
+    do                                                                                                \
+    {                                                                                                 \
+        /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */         \
+        /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */             \
+        /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
+        __asm__("vzip.32  %e0, %f0" : "+w"(in));                                                      \
+        (outLo) = vget_low_u32(vreinterpretq_u32_u64(in));                                            \
+        (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                           \
+    } while (0)
+#else
+#define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
+    do                                       \
+    {                                        \
+        (outLo) = vmovn_u64(in);             \
+        (outHi) = vshrn_n_u64((in), 32);     \
+    } while (0)
+#endif
+#endif /* XXH_VECTOR == XXH_NEON */
+
+/*
+ * VSX and Z Vector helpers.
+ *
+ * This is very messy, and any pull requests to clean this up are welcome.
+ *
+ * There are a lot of problems with supporting VSX and s390x, due to
+ * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
+ */
+#if XXH_VECTOR == XXH_VSX
+#if defined(__s390x__)
+#include <s390intrin.h>
+#else
+#include <altivec.h>
+#endif
+
+#undef vector /* Undo the pollution */
+
+typedef __vector unsigned long long xxh_u64x2;
+typedef __vector unsigned char xxh_u8x16;
+typedef __vector unsigned xxh_u32x4;
+
+#ifndef XXH_VSX_BE
+#if defined(__BIG_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#define XXH_VSX_BE 1
+#elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
+#warning "-maltivec=be is not recommended. Please use native endianness."
+#define XXH_VSX_BE 1
+#else
+#define XXH_VSX_BE 0
+#endif
+#endif /* !defined(XXH_VSX_BE) */
+
+#if XXH_VSX_BE
+/* A wrapper for POWER9's vec_revb. */
+#if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
+#define XXH_vec_revb vec_revb
+#else
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
+{
+    xxh_u8x16 const vByteSwap = {0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08};
+    return vec_perm(val, val, vByteSwap);
+}
+#endif
+#endif /* XXH_VSX_BE */
+
+/*
+ * Performs an unaligned load and byte swaps it on big endian.
+ */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void* ptr)
+{
+    xxh_u64x2 ret;
+    memcpy(&ret, ptr, sizeof(xxh_u64x2));
+#if XXH_VSX_BE
+    ret = XXH_vec_revb(ret);
+#endif
+    return ret;
+}
+
+/*
+ * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
+ *
+ * These intrinsics weren't added until GCC 8, despite existing for a while,
+ * and they are endian dependent. Also, their meaning swap depending on version.
+ * */
+#if defined(__s390x__)
+/* s390x is always big endian, no issue on this platform */
+#define XXH_vec_mulo vec_mulo
+#define XXH_vec_mule vec_mule
+#elif defined(__clang__) && __has_builtin(__builtin_altivec_vmuleuw)
+/* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
+#define XXH_vec_mulo __builtin_altivec_vmulouw
+#define XXH_vec_mule __builtin_altivec_vmuleuw
+#else
+/* gcc needs inline assembly */
+/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
+{
+    xxh_u64x2 result;
+    __asm__("vmulouw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
+    return result;
+}
+XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
+{
+    xxh_u64x2 result;
+    __asm__("vmuleuw %0, %1, %2" : "=v"(result) : "v"(a), "v"(b));
+    return result;
+}
+#endif /* XXH_vec_mulo, XXH_vec_mule */
+#endif /* XXH_VECTOR == XXH_VSX */
+
+
+/* prefetch
+ * can be disabled, by declaring XXH_NO_PREFETCH build macro */
+#if defined(XXH_NO_PREFETCH)
+#define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+#else
+#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */
+#include <mmintrin.h>                                         /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
+#define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
+#elif defined(__GNUC__) && ((__GNUC__ >= 4) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1)))
+#define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
+#else
+#define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
+#endif
+#endif /* XXH_NO_PREFETCH */
+
+
+/* ==========================================
+ * XXH3 default settings
+ * ========================================== */
+
+#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
+
+#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
+#error "default keyset is not large enough"
+#endif
+
+/* Pseudorandom secret taken directly from FARSH */
+XXH_ALIGN(64)
+static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = {
+    0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90,
+    0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d,
+    0xcc, 0xff, 0x72, 0x21, 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28,
+    0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e,
+    0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b,
+    0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
+
+    0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0,
+    0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1,
+    0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
+};
+
+/*
+ * Calculates a 32-bit to 64-bit long multiply.
+ *
+ * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
+ * need to (but it shouldn't need to anyways, it is about 7 instructions to do
+ * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
+ * use that instead of the normal method.
+ *
+ * If you are compiling for platforms like Thumb-1 and don't have a better option,
+ * you may also want to write your own long multiply routine here.
+ *
+ * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
+ * {
+ *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
+ * }
+ */
+#if defined(_MSC_VER) && defined(_M_IX86)
+#include <intrin.h>
+#define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
+#else
+/*
+ * Downcast + upcast is usually better than masking on older compilers like
+ * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
+ *
+ * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
+ * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
+ */
+#define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
+#endif
+
+/*
+ * Calculates a 64->128-bit long multiply.
+ *
+ * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
+ */
+static XXH128_hash_t XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
+{
+    /*
+     * GCC/Clang __uint128_t method.
+     *
+     * On most 64-bit targets, GCC and Clang define a __uint128_t type.
+     * This is usually the best way as it usually uses a native long 64-bit
+     * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
+     *
+     * Usually.
+     *
+     * Despite being a 32-bit platform, Clang (and emscripten) define this type
+     * despite not having the arithmetic for it. This results in a laggy
+     * compiler builtin call which calculates a full 128-bit multiply.
+     * In that case it is best to use the portable one.
+     * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
+     */
+#if defined(__GNUC__) && !defined(__wasm__) && defined(__SIZEOF_INT128__) || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
+
+    __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
+    XXH128_hash_t r128;
+    r128.low64 = (xxh_u64)(product);
+    r128.high64 = (xxh_u64)(product >> 64);
+    return r128;
+
+    /*
+     * MSVC for x64's _umul128 method.
+     *
+     * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
+     *
+     * This compiles to single operand MUL on x64.
+     */
+#elif defined(_M_X64) || defined(_M_IA64)
+
+#ifndef _MSC_VER
+#pragma intrinsic(_umul128)
+#endif
+    xxh_u64 product_high;
+    xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
+    XXH128_hash_t r128;
+    r128.low64 = product_low;
+    r128.high64 = product_high;
+    return r128;
+
+#else
+    /*
+     * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
+     *
+     * This is a fast and simple grade school multiply, which is shown below
+     * with base 10 arithmetic instead of base 0x100000000.
+     *
+     *           9 3 // D2 lhs = 93
+     *         x 7 5 // D2 rhs = 75
+     *     ----------
+     *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
+     *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
+     *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
+     *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
+     *     ---------
+     *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
+     *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
+     *     ---------
+     *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
+     *
+     * The reasons for adding the products like this are:
+     *  1. It avoids manual carry tracking. Just like how
+     *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
+     *     This avoids a lot of complexity.
+     *
+     *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
+     *     instruction available in ARM's Digital Signal Processing extension
+     *     in 32-bit ARMv6 and later, which is shown below:
+     *
+     *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
+     *         {
+     *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
+     *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
+     *             *RdHi = (xxh_u32)(product >> 32);
+     *         }
+     *
+     *     This instruction was designed for efficient long multiplication, and
+     *     allows this to be calculated in only 4 instructions at speeds
+     *     comparable to some 64-bit ALUs.
+     *
+     *  3. It isn't terrible on other platforms. Usually this will be a couple
+     *     of 32-bit ADD/ADCs.
+     */
+
+    /* First calculate all of the cross products. */
+    xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
+    xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
+    xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
+    xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
+
+    /* Now add the products together. These will never overflow. */
+    xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
+    xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
+    xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
+
+    XXH128_hash_t r128;
+    r128.low64 = lower;
+    r128.high64 = upper;
+    return r128;
+#endif
+}
+
+/*
+ * Does a 64-bit to 128-bit multiply, then XOR folds it.
+ *
+ * The reason for the separate function is to prevent passing too many structs
+ * around by value. This will hopefully inline the multiply, but we don't force it.
+ */
+static xxh_u64 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
+{
+    XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
+    return product.low64 ^ product.high64;
+}
+
+/* Seems to produce slightly better code on GCC for some reason. */
+XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
+{
+    XXH_ASSERT(0 <= shift && shift < 64);
+    return v64 ^ (v64 >> shift);
+}
+
+/*
+ * We don't need to (or want to) mix as much as XXH64.
+ *
+ * Short hashes are more evenly distributed, so it isn't necessary.
+ */
+static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
+{
+    h64 = XXH_xorshift64(h64, 37);
+    h64 *= 0x165667919E3779F9ULL;
+    h64 = XXH_xorshift64(h64, 32);
+    return h64;
+}
+
+
+/* ==========================================
+ * Short keys
+ * ==========================================
+ * One of the shortcomings of XXH32 and XXH64 was that their performance was
+ * sub-optimal on short lengths. It used an iterative algorithm which strongly
+ * favored lengths that were a multiple of 4 or 8.
+ *
+ * Instead of iterating over individual inputs, we use a set of single shot
+ * functions which piece together a range of lengths and operate in constant time.
+ *
+ * Additionally, the number of multiplies has been significantly reduced. This
+ * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
+ *
+ * Depending on the platform, this may or may not be faster than XXH32, but it
+ * is almost guaranteed to be faster than XXH64.
+ */
+
+/*
+ * At very short lengths, there isn't enough input to fully hide secrets, or use
+ * the entire secret.
+ *
+ * There is also only a limited amount of mixing we can do before significantly
+ * impacting performance.
+ *
+ * Therefore, we use different sections of the secret and always mix two secret
+ * samples with an XOR. This should have no effect on performance on the
+ * seedless or withSeed variants because everything _should_ be constant folded
+ * by modern compilers.
+ *
+ * The XOR mixing hides individual parts of the secret and increases entropy.
+ *
+ * This adds an extra layer of strength for custom secrets.
+ */
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(1 <= len && len <= 3);
+    XXH_ASSERT(secret != NULL);
+    /*
+     * len = 1: combined = { input[0], 0x01, input[0], input[0] }
+     * len = 2: combined = { input[1], 0x02, input[0], input[1] }
+     * len = 3: combined = { input[2], 0x03, input[0], input[1] }
+     */
+    {
+        xxh_u8 const c1 = input[0];
+        xxh_u8 const c2 = input[len >> 1];
+        xxh_u8 const c3 = input[len - 1];
+        xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+        xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
+        xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
+        xxh_u64 const mixed = keyed * PRIME64_1;
+        return XXH3_avalanche(mixed);
+    }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(4 <= len && len < 8);
+    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+    {
+        xxh_u32 const input1 = XXH_readLE32(input);
+        xxh_u32 const input2 = XXH_readLE32(input + len - 4);
+        xxh_u64 const bitflip = (XXH_readLE64(secret + 8) ^ XXH_readLE64(secret + 16)) - seed;
+        xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
+        xxh_u64 x = input64 ^ bitflip;
+        /* this mix is inspired by Pelle Evensen's rrmxmx */
+        x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24);
+        x *= 0x9FB21C651E98DF25ULL;
+        x ^= (x >> 35) + len;
+        x *= 0x9FB21C651E98DF25ULL;
+        return XXH_xorshift64(x, 28);
+    }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(8 <= len && len <= 16);
+    {
+        xxh_u64 const bitflip1 = (XXH_readLE64(secret + 24) ^ XXH_readLE64(secret + 32)) + seed;
+        xxh_u64 const bitflip2 = (XXH_readLE64(secret + 40) ^ XXH_readLE64(secret + 48)) - seed;
+        xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
+        xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
+        xxh_u64 const acc = len + XXH_swap64(input_lo) + input_hi + XXH3_mul128_fold64(input_lo, input_hi);
+        return XXH3_avalanche(acc);
+    }
+}
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(len <= 16);
+    {
+        if (XXH_likely(len > 8))
+            return XXH3_len_9to16_64b(input, len, secret, seed);
+        if (XXH_likely(len >= 4))
+            return XXH3_len_4to8_64b(input, len, secret, seed);
+        if (len)
+            return XXH3_len_1to3_64b(input, len, secret, seed);
+        return XXH3_avalanche((PRIME64_1 + seed) ^ (XXH_readLE64(secret + 56) ^ XXH_readLE64(secret + 64)));
+    }
+}
+
+/*
+ * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
+ * multiplication by zero, affecting hashes of lengths 17 to 240.
+ *
+ * However, they are very unlikely.
+ *
+ * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
+ * unseeded non-cryptographic hashes, it does not attempt to defend itself
+ * against specially crafted inputs, only random inputs.
+ *
+ * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
+ * cancelling out the secret is taken an arbitrary number of times (addressed
+ * in XXH3_accumulate_512), this collision is very unlikely with random inputs
+ * and/or proper seeding:
+ *
+ * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
+ * function that is only called up to 16 times per hash with up to 240 bytes of
+ * input.
+ *
+ * This is not too bad for a non-cryptographic hash function, especially with
+ * only 64 bit outputs.
+ *
+ * The 128-bit variant (which trades some speed for strength) is NOT affected
+ * by this, although it is always a good idea to use a proper seed if you care
+ * about strength.
+ */
+XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
+{
+#if defined(__GNUC__) && !defined(__clang__)  /* GCC, not Clang */ \
+    && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */     \
+    && !defined(XXH_ENABLE_AUTOVECTORIZE)     /* Define to disable like XXH32 hack */
+    /*
+     * UGLY HACK:
+     * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
+     * slower code.
+     *
+     * By forcing seed64 into a register, we disrupt the cost model and
+     * cause it to scalarize. See `XXH32_round()`
+     *
+     * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
+     * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
+     * GCC 9.2, despite both emitting scalar code.
+     *
+     * GCC generates much better scalar code than Clang for the rest of XXH3,
+     * which is why finding a more optimal codepath is an interest.
+     */
+    __asm__("" : "+r"(seed64));
+#endif
+    {
+        xxh_u64 const input_lo = XXH_readLE64(input);
+        xxh_u64 const input_hi = XXH_readLE64(input + 8);
+        return XXH3_mul128_fold64(input_lo ^ (XXH_readLE64(secret) + seed64), input_hi ^ (XXH_readLE64(secret + 8) - seed64));
+    }
+}
+
+/* For mid range keys, XXH3 uses a Mum-hash variant. */
+XXH_FORCE_INLINE XXH64_hash_t XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    (void)secretSize;
+    XXH_ASSERT(16 < len && len <= 128);
+
+    {
+        xxh_u64 acc = len * PRIME64_1;
+        if (len > 32)
+        {
+            if (len > 64)
+            {
+                if (len > 96)
+                {
+                    acc += XXH3_mix16B(input + 48, secret + 96, seed);
+                    acc += XXH3_mix16B(input + len - 64, secret + 112, seed);
+                }
+                acc += XXH3_mix16B(input + 32, secret + 64, seed);
+                acc += XXH3_mix16B(input + len - 48, secret + 80, seed);
+            }
+            acc += XXH3_mix16B(input + 16, secret + 32, seed);
+            acc += XXH3_mix16B(input + len - 32, secret + 48, seed);
+        }
+        acc += XXH3_mix16B(input + 0, secret + 0, seed);
+        acc += XXH3_mix16B(input + len - 16, secret + 16, seed);
+
+        return XXH3_avalanche(acc);
+    }
+}
+
+#define XXH3_MIDSIZE_MAX 240
+
+XXH_NO_INLINE XXH64_hash_t XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    (void)secretSize;
+    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+#define XXH3_MIDSIZE_STARTOFFSET 3
+#define XXH3_MIDSIZE_LASTOFFSET 17
+
+    {
+        xxh_u64 acc = len * PRIME64_1;
+        int const nbRounds = (int)len / 16;
+        int i;
+        for (i = 0; i < 8; i++)
+        {
+            acc += XXH3_mix16B(input + (16 * i), secret + (16 * i), seed);
+        }
+        acc = XXH3_avalanche(acc);
+        XXH_ASSERT(nbRounds >= 8);
+#if defined(__clang__)                                /* Clang */ \
+    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
+    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
+/*
+ * UGLY HACK:
+ * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
+ * In everywhere else, it uses scalar code.
+ *
+ * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
+ * would still be slower than UMAAL (see XXH_mult64to128).
+ *
+ * Unfortunately, Clang doesn't handle the long multiplies properly and
+ * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
+ * scalarized into an ugly mess of VMOV.32 instructions.
+ *
+ * This mess is difficult to avoid without turning autovectorization
+ * off completely, but they are usually relatively minor and/or not
+ * worth it to fix.
+ *
+ * This loop is the easiest to fix, as unlike XXH32, this pragma
+ * _actually works_ because it is a loop vectorization instead of an
+ * SLP vectorization.
+ */
+#pragma clang loop vectorize(disable)
+#endif
+        for (i = 8; i < nbRounds; i++)
+        {
+            acc += XXH3_mix16B(input + (16 * i), secret + (16 * (i - 8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
+        }
+        /* last bytes */
+        acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
+        return XXH3_avalanche(acc);
+    }
+}
+
+
+/* ===    Long Keys    === */
+
+#define STRIPE_LEN 64
+#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
+#define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
+
+typedef enum
+{
+    XXH3_acc_64bits,
+    XXH3_acc_128bits
+} XXH3_accWidth_e;
+
+/*
+ * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
+ *
+ * It is a hardened version of UMAC, based off of FARSH's implementation.
+ *
+ * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
+ * implementations, and it is ridiculously fast.
+ *
+ * We harden it by mixing the original input to the accumulators as well as the product.
+ *
+ * This means that in the (relatively likely) case of a multiply by zero, the
+ * original input is preserved.
+ *
+ * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
+ * cross-pollination, as otherwise the upper and lower halves would be
+ * essentially independent.
+ *
+ * This doesn't matter on 64-bit hashes since they all get merged together in
+ * the end, so we skip the extra step.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+XXH_FORCE_INLINE void XXH3_accumulate_512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT input, const void* XXH_RESTRICT secret, XXH3_accWidth_e accWidth)
+{
+#if (XXH_VECTOR == XXH_AVX512)
+
+    XXH_ASSERT((((size_t)acc) & 63) == 0);
+    XXH_STATIC_ASSERT(STRIPE_LEN == sizeof(__m512i));
+    {
+        XXH_ALIGN(64) __m512i* const xacc = (__m512i*)acc;
+
+        /* data_vec    = input[0]; */
+        __m512i const data_vec = _mm512_loadu_si512(input);
+        /* key_vec     = secret[0]; */
+        __m512i const key_vec = _mm512_loadu_si512(secret);
+        /* data_key    = data_vec ^ key_vec; */
+        __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
+        /* data_key_lo = data_key >> 32; */
+        __m512i const data_key_lo = _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+        /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+        __m512i const product = _mm512_mul_epu32(data_key, data_key_lo);
+        if (accWidth == XXH3_acc_128bits)
+        {
+            /* xacc[0] += swap(data_vec); */
+            __m512i const data_swap = _mm512_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+            __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
+            /* xacc[0] += product; */
+            *xacc = _mm512_add_epi64(product, sum);
+        }
+        else
+        { /* XXH3_acc_64bits */
+            /* xacc[0] += data_vec; */
+            __m512i const sum = _mm512_add_epi64(*xacc, data_vec);
+            /* xacc[0] += product; */
+            *xacc = _mm512_add_epi64(product, sum);
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_AVX2)
+
+    XXH_ASSERT((((size_t)acc) & 31) == 0);
+    {
+        XXH_ALIGN(32) __m256i* const xacc = (__m256i*)acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
+        const __m256i* const xinput = (const __m256i*)input;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+        const __m256i* const xsecret = (const __m256i*)secret;
+
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(__m256i); i++)
+        {
+            /* data_vec    = xinput[i]; */
+            __m256i const data_vec = _mm256_loadu_si256(xinput + i);
+            /* key_vec     = xsecret[i]; */
+            __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
+            /* data_key    = data_vec ^ key_vec; */
+            __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
+            /* data_key_lo = data_key >> 32; */
+            __m256i const data_key_lo = _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+            __m256i const product = _mm256_mul_epu32(data_key, data_key_lo);
+            if (accWidth == XXH3_acc_128bits)
+            {
+                /* xacc[i] += swap(data_vec); */
+                __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+                __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
+                /* xacc[i] += product; */
+                xacc[i] = _mm256_add_epi64(product, sum);
+            }
+            else
+            { /* XXH3_acc_64bits */
+                /* xacc[i] += data_vec; */
+                __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
+                /* xacc[i] += product; */
+                xacc[i] = _mm256_add_epi64(product, sum);
+            }
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_SSE2)
+
+    /* SSE2 is just a half-scale version of the AVX2 version. */
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+    {
+        XXH_ALIGN(16) __m128i* const xacc = (__m128i*)acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+        const __m128i* const xinput = (const __m128i*)input;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+        const __m128i* const xsecret = (const __m128i*)secret;
+
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(__m128i); i++)
+        {
+            /* data_vec    = xinput[i]; */
+            __m128i const data_vec = _mm_loadu_si128(xinput + i);
+            /* key_vec     = xsecret[i]; */
+            __m128i const key_vec = _mm_loadu_si128(xsecret + i);
+            /* data_key    = data_vec ^ key_vec; */
+            __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
+            /* data_key_lo = data_key >> 32; */
+            __m128i const data_key_lo = _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+            /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
+            __m128i const product = _mm_mul_epu32(data_key, data_key_lo);
+            if (accWidth == XXH3_acc_128bits)
+            {
+                /* xacc[i] += swap(data_vec); */
+                __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
+                __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
+                /* xacc[i] += product; */
+                xacc[i] = _mm_add_epi64(product, sum);
+            }
+            else
+            { /* XXH3_acc_64bits */
+                /* xacc[i] += data_vec; */
+                __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
+                /* xacc[i] += product; */
+                xacc[i] = _mm_add_epi64(product, sum);
+            }
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_NEON)
+
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+    {
+        XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t*)acc;
+        /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
+        uint8_t const* const xinput = (const uint8_t*)input;
+        uint8_t const* const xsecret = (const uint8_t*)secret;
+
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(uint64x2_t); i++)
+        {
+            /* data_vec = xinput[i]; */
+            uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
+            /* key_vec  = xsecret[i];  */
+            uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
+            uint64x2_t data_key;
+            uint32x2_t data_key_lo, data_key_hi;
+            if (accWidth == XXH3_acc_64bits)
+            {
+                /* xacc[i] += data_vec; */
+                xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u8(data_vec));
+            }
+            else
+            { /* XXH3_acc_128bits */
+                /* xacc[i] += swap(data_vec); */
+                uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
+                uint64x2_t const swapped = vextq_u64(data64, data64, 1);
+                xacc[i] = vaddq_u64(xacc[i], swapped);
+            }
+            /* data_key = data_vec ^ key_vec; */
+            data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
+            /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
+             * data_key_hi = (uint32x2_t) (data_key >> 32);
+             * data_key = UNDEFINED; */
+            XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+            /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
+            xacc[i] = vmlal_u32(xacc[i], data_key_lo, data_key_hi);
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_VSX)
+    xxh_u64x2* const xacc = (xxh_u64x2*)acc;                   /* presumed aligned */
+    xxh_u64x2 const* const xinput = (xxh_u64x2 const*)input;   /* no alignment restriction */
+    xxh_u64x2 const* const xsecret = (xxh_u64x2 const*)secret; /* no alignment restriction */
+    xxh_u64x2 const v32 = {32, 32};
+    size_t i;
+    for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++)
+    {
+        /* data_vec = xinput[i]; */
+        xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
+        /* key_vec = xsecret[i]; */
+        xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+        xxh_u64x2 const data_key = data_vec ^ key_vec;
+        /* shuffled = (data_key << 32) | (data_key >> 32); */
+        xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
+        /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
+        xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
+        xacc[i] += product;
+
+        if (accWidth == XXH3_acc_64bits)
+        {
+            xacc[i] += data_vec;
+        }
+        else
+        { /* XXH3_acc_128bits */
+            /* swap high and low halves */
+#ifdef __s390x__
+            xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
+#else
+            xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
+#endif
+            xacc[i] += data_swapped;
+        }
+    }
+
+#else /* scalar variant of Accumulator - universal */
+
+    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*)acc; /* presumed aligned */
+    const xxh_u8* const xinput = (const xxh_u8*)input;            /* no alignment restriction */
+    const xxh_u8* const xsecret = (const xxh_u8*)secret;          /* no alignment restriction */
+    size_t i;
+    XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN - 1)) == 0);
+    for (i = 0; i < ACC_NB; i++)
+    {
+        xxh_u64 const data_val = XXH_readLE64(xinput + 8 * i);
+        xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i * 8);
+
+        if (accWidth == XXH3_acc_64bits)
+        {
+            xacc[i] += data_val;
+        }
+        else
+        {
+            xacc[i ^ 1] += data_val; /* swap adjacent lanes */
+        }
+        xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
+    }
+#endif
+}
+
+/*
+ * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
+ *
+ * Multiplication isn't perfect, as explained by Google in HighwayHash:
+ *
+ *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
+ *  // varying degrees. In descending order of goodness, bytes
+ *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
+ *  // As expected, the upper and lower bytes are much worse.
+ *
+ * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
+ *
+ * Since our algorithm uses a pseudorandom secret to add some variance into the
+ * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
+ *
+ * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
+ * extraction.
+ *
+ * Both XXH3_64bits and XXH3_128bits use this subroutine.
+ */
+XXH_FORCE_INLINE void XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
+{
+#if (XXH_VECTOR == XXH_AVX512)
+
+    XXH_ASSERT((((size_t)acc) & 63) == 0);
+    XXH_STATIC_ASSERT(STRIPE_LEN == sizeof(__m512i));
+    {
+        XXH_ALIGN(64) __m512i* const xacc = (__m512i*)acc;
+        const __m512i prime32 = _mm512_set1_epi32((int)PRIME32_1);
+
+        /* xacc[0] ^= (xacc[0] >> 47) */
+        __m512i const acc_vec = *xacc;
+        __m512i const shifted = _mm512_srli_epi64(acc_vec, 47);
+        __m512i const data_vec = _mm512_xor_si512(acc_vec, shifted);
+        /* xacc[0] ^= secret; */
+        __m512i const key_vec = _mm512_loadu_si512(secret);
+        __m512i const data_key = _mm512_xor_si512(data_vec, key_vec);
+
+        /* xacc[0] *= PRIME32_1; */
+        __m512i const data_key_hi = _mm512_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+        __m512i const prod_lo = _mm512_mul_epu32(data_key, prime32);
+        __m512i const prod_hi = _mm512_mul_epu32(data_key_hi, prime32);
+        *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
+    }
+
+#elif (XXH_VECTOR == XXH_AVX2)
+
+    XXH_ASSERT((((size_t)acc) & 31) == 0);
+    {
+        XXH_ALIGN(32) __m256i* const xacc = (__m256i*)acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
+        const __m256i* const xsecret = (const __m256i*)secret;
+        const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
+
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(__m256i); i++)
+        {
+            /* xacc[i] ^= (xacc[i] >> 47) */
+            __m256i const acc_vec = xacc[i];
+            __m256i const shifted = _mm256_srli_epi64(acc_vec, 47);
+            __m256i const data_vec = _mm256_xor_si256(acc_vec, shifted);
+            /* xacc[i] ^= xsecret; */
+            __m256i const key_vec = _mm256_loadu_si256(xsecret + i);
+            __m256i const data_key = _mm256_xor_si256(data_vec, key_vec);
+
+            /* xacc[i] *= PRIME32_1; */
+            __m256i const data_key_hi = _mm256_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+            __m256i const prod_lo = _mm256_mul_epu32(data_key, prime32);
+            __m256i const prod_hi = _mm256_mul_epu32(data_key_hi, prime32);
+            xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_SSE2)
+
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+    {
+        XXH_ALIGN(16) __m128i* const xacc = (__m128i*)acc;
+        /* Unaligned. This is mainly for pointer arithmetic, and because
+         * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
+        const __m128i* const xsecret = (const __m128i*)secret;
+        const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
+
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(__m128i); i++)
+        {
+            /* xacc[i] ^= (xacc[i] >> 47) */
+            __m128i const acc_vec = xacc[i];
+            __m128i const shifted = _mm_srli_epi64(acc_vec, 47);
+            __m128i const data_vec = _mm_xor_si128(acc_vec, shifted);
+            /* xacc[i] ^= xsecret[i]; */
+            __m128i const key_vec = _mm_loadu_si128(xsecret + i);
+            __m128i const data_key = _mm_xor_si128(data_vec, key_vec);
+
+            /* xacc[i] *= PRIME32_1; */
+            __m128i const data_key_hi = _mm_shuffle_epi32(data_key, _MM_SHUFFLE(0, 3, 0, 1));
+            __m128i const prod_lo = _mm_mul_epu32(data_key, prime32);
+            __m128i const prod_hi = _mm_mul_epu32(data_key_hi, prime32);
+            xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_NEON)
+
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+    {
+        uint64x2_t* xacc = (uint64x2_t*)acc;
+        uint8_t const* xsecret = (uint8_t const*)secret;
+        uint32x2_t prime = vdup_n_u32(PRIME32_1);
+
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(uint64x2_t); i++)
+        {
+            /* xacc[i] ^= (xacc[i] >> 47); */
+            uint64x2_t acc_vec = xacc[i];
+            uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
+            uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
+
+            /* xacc[i] ^= xsecret[i]; */
+            uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
+            uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
+
+            /* xacc[i] *= PRIME32_1 */
+            uint32x2_t data_key_lo, data_key_hi;
+            /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
+             * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
+             * xacc[i] = UNDEFINED; */
+            XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
+            { /*
+               * prod_hi = (data_key >> 32) * PRIME32_1;
+               *
+               * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
+               * incorrectly "optimize" this:
+               *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
+               *   shifted = vshll_n_u32(tmp, 32);
+               * to this:
+               *   tmp     = "vmulq_u64"(a, b); // no such thing!
+               *   shifted = vshlq_n_u64(tmp, 32);
+               *
+               * However, unlike SSE, Clang lacks a 64-bit multiply routine
+               * for NEON, and it scalarizes two 64-bit multiplies instead.
+               *
+               * vmull_u32 has the same timing as vmul_u32, and it avoids
+               * this bug completely.
+               * See https://bugs.llvm.org/show_bug.cgi?id=39967
+               */
+                uint64x2_t prod_hi = vmull_u32(data_key_hi, prime);
+                /* xacc[i] = prod_hi << 32; */
+                xacc[i] = vshlq_n_u64(prod_hi, 32);
+                /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
+                xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
+            }
+        }
+    }
+
+#elif (XXH_VECTOR == XXH_VSX)
+
+    XXH_ASSERT((((size_t)acc) & 15) == 0);
+
+    {
+        xxh_u64x2* const xacc = (xxh_u64x2*)acc;
+        const xxh_u64x2* const xsecret = (const xxh_u64x2*)secret;
+        /* constants */
+        xxh_u64x2 const v32 = {32, 32};
+        xxh_u64x2 const v47 = {47, 47};
+        xxh_u32x4 const prime = {PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1};
+        size_t i;
+        for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++)
+        {
+            /* xacc[i] ^= (xacc[i] >> 47); */
+            xxh_u64x2 const acc_vec = xacc[i];
+            xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
+
+            /* xacc[i] ^= xsecret[i]; */
+            xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
+            xxh_u64x2 const data_key = data_vec ^ key_vec;
+
+            /* xacc[i] *= PRIME32_1 */
+            /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
+            xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
+            /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
+            xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
+            xacc[i] = prod_odd + (prod_even << v32);
+        }
+    }
+
+#else /* scalar variant of Scrambler - universal */
+
+    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*)acc; /* presumed aligned */
+    const xxh_u8* const xsecret = (const xxh_u8*)secret;          /* no alignment restriction */
+    size_t i;
+    XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN - 1)) == 0);
+    for (i = 0; i < ACC_NB; i++)
+    {
+        xxh_u64 const key64 = XXH_readLE64(xsecret + 8 * i);
+        xxh_u64 acc64 = xacc[i];
+        acc64 = XXH_xorshift64(acc64, 47);
+        acc64 ^= key64;
+        acc64 *= PRIME32_1;
+        xacc[i] = acc64;
+    }
+
+#endif
+}
+
+#define XXH_PREFETCH_DIST 384
+
+#ifdef __clang__ // for clang
+#define XXH_PREFETCH_DIST_AVX512_64 320
+#define XXH_PREFETCH_DIST_AVX512_128 320
+#else // for gcc
+#define XXH_PREFETCH_DIST_AVX512_64 640
+#define XXH_PREFETCH_DIST_AVX512_128 512
+#endif
+
+/*
+ * XXH3_accumulate()
+ * Loops over XXH3_accumulate_512().
+ * Assumption: nbStripes will not overflow the secret size
+ */
+XXH_FORCE_INLINE void XXH3_accumulate(xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, const xxh_u8* XXH_RESTRICT secret, size_t nbStripes, XXH3_accWidth_e accWidth)
+{
+    size_t n;
+    for (n = 0; n < nbStripes; n++)
+    {
+        const xxh_u8* const in = input + n * STRIPE_LEN;
+#if (XXH_VECTOR == XXH_AVX512)
+        if (accWidth == XXH3_acc_64bits)
+            XXH_PREFETCH(in + XXH_PREFETCH_DIST_AVX512_64);
+        else
+            XXH_PREFETCH(in + XXH_PREFETCH_DIST_AVX512_128);
+#else
+        XXH_PREFETCH(in + XXH_PREFETCH_DIST);
+#endif
+        XXH3_accumulate_512(acc, in, secret + n * XXH_SECRET_CONSUME_RATE, accWidth);
+    }
+}
+
+XXH_FORCE_INLINE void XXH3_hashLong_internal_loop(
+    xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH3_accWidth_e accWidth)
+{
+    size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
+    size_t const block_len = STRIPE_LEN * nb_rounds;
+    size_t const nb_blocks = len / block_len;
+
+    size_t n;
+
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+
+    for (n = 0; n < nb_blocks; n++)
+    {
+        XXH3_accumulate(acc, input + n * block_len, secret, nb_rounds, accWidth);
+        XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
+    }
+
+    /* last partial block */
+    XXH_ASSERT(len > STRIPE_LEN);
+    {
+        size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
+        XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
+        XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes, accWidth);
+
+        /* last stripe */
+        if (len & (STRIPE_LEN - 1))
+        {
+            const xxh_u8* const p = input + len - STRIPE_LEN;
+            /* Do not align on 8, so that the secret is different from the scrambler */
+#define XXH_SECRET_LASTACC_START 7
+            XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth);
+        }
+    }
+}
+
+XXH_FORCE_INLINE xxh_u64 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
+{
+    return XXH3_mul128_fold64(acc[0] ^ XXH_readLE64(secret), acc[1] ^ XXH_readLE64(secret + 8));
+}
+
+static XXH64_hash_t XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
+{
+    xxh_u64 result64 = start;
+    size_t i = 0;
+
+    for (i = 0; i < 4; i++)
+    {
+        result64 += XXH3_mix2Accs(acc + 2 * i, secret + 16 * i);
+#if defined(__clang__)                                /* Clang */ \
+    && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
+    && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
+    && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
+        /*
+         * UGLY HACK:
+         * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
+         * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
+         * XXH3_64bits, len == 256, Snapdragon 835:
+         *   without hack: 2063.7 MB/s
+         *   with hack:    2560.7 MB/s
+         */
+        __asm__("" : "+r"(result64));
+#endif
+    }
+
+    return XXH3_avalanche(result64);
+}
+
+#define XXH3_INIT_ACC                                                                          \
+    {                                                                                          \
+        PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 \
+    }
+
+XXH_FORCE_INLINE XXH64_hash_t XXH3_hashLong_64b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
+{
+    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
+
+    XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits);
+
+    /* converge into final hash */
+    XXH_STATIC_ASSERT(sizeof(acc) == 64);
+    /* do not align on 8, so that the secret is different from the accumulator */
+#define XXH_SECRET_MERGEACCS_START 11
+    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+    return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
+}
+
+XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
+{
+    if (!XXH_CPU_LITTLE_ENDIAN)
+        v64 = XXH_swap64(v64);
+    memcpy(dst, &v64, sizeof(v64));
+}
+
+/* XXH3_initCustomSecret() :
+ * destination `customSecret` is presumed allocated and same size as `kSecret`.
+ */
+XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* XXH_RESTRICT customSecret, xxh_u64 seed64)
+{
+    int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
+    int i;
+    /*
+     * We need a separate pointer for the hack below.
+     * Any decent compiler will optimize this out otherwise.
+     */
+    const xxh_u8* kSecretPtr = kSecret;
+
+    XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
+
+#if defined(__clang__) && defined(__aarch64__)
+    /*
+     * UGLY HACK:
+     * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
+     * placed sequentially, in order, at the top of the unrolled loop.
+     *
+     * While MOVK is great for generating constants (2 cycles for a 64-bit
+     * constant compared to 4 cycles for LDR), long MOVK chains stall the
+     * integer pipelines:
+     *   I   L   S
+     * MOVK
+     * MOVK
+     * MOVK
+     * MOVK
+     * ADD
+     * SUB      STR
+     *          STR
+     * By forcing loads from memory (as the asm line causes Clang to assume
+     * that kSecretPtr has been changed), the pipelines are used more efficiently:
+     *   I   L   S
+     *      LDR
+     *  ADD LDR
+     *  SUB     STR
+     *          STR
+     * XXH3_64bits_withSeed, len == 256, Snapdragon 835
+     *   without hack: 2654.4 MB/s
+     *   with hack:    3202.9 MB/s
+     */
+    __asm__("" : "+r"(kSecretPtr));
+#endif
+    /*
+     * Note: in debug mode, this overrides the asm optimization
+     * and Clang will emit MOVK chains again.
+     */
+    XXH_ASSERT(kSecretPtr == kSecret);
+
+    for (i = 0; i < nbRounds; i++)
+    {
+        /*
+         * The asm hack causes Clang to assume that kSecretPtr aliases with
+         * customSecret, and on aarch64, this prevented LDP from merging two
+         * loads together for free. Putting the loads together before the stores
+         * properly generates LDP.
+         */
+        xxh_u64 lo = XXH_readLE64(kSecretPtr + 16 * i) + seed64;
+        xxh_u64 hi = XXH_readLE64(kSecretPtr + 16 * i + 8) - seed64;
+        XXH_writeLE64(customSecret + 16 * i, lo);
+        XXH_writeLE64(customSecret + 16 * i + 8, hi);
+    }
+}
+
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len)
+{
+    return XXH3_hashLong_64b_internal(input, len, kSecret, sizeof(kSecret));
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
+{
+    return XXH3_hashLong_64b_internal(input, len, secret, secretSize);
+}
+
+/*
+ * XXH3_hashLong_64b_withSeed():
+ * Generate a custom key based on alteration of default kSecret with the seed,
+ * and then use this key for long mode hashing.
+ *
+ * This operation is decently fast but nonetheless costs a little bit of time.
+ * Try to avoid it whenever possible (typically when seed==0).
+ *
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_NO_INLINE XXH64_hash_t XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
+{
+    XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+    if (seed == 0)
+        return XXH3_hashLong_64b_defaultSecret(input, len);
+    XXH3_initCustomSecret(secret, seed);
+    return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret));
+}
+
+/* ===   Public entry point   === */
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
+{
+    if (len <= 16)
+        return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
+    if (len <= 128)
+        return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
+    return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    /*
+     * If an action is to be taken if `secret` conditions are not respected,
+     * it should be done here.
+     * For now, it's a contract pre-condition.
+     * Adding a check and a branch here would cost performance at every hash.
+     */
+    if (len <= 16)
+        return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
+    if (len <= 128)
+        return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
+    return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+{
+    if (len <= 16)
+        return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
+    if (len <= 128)
+        return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
+    return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
+}
+
+/* ===   XXH3 streaming   === */
+
+
+/*
+ * Malloc's a pointer that is always aligned to align.
+ *
+ * This must be freed with `XXH_alignedFree()`.
+ *
+ * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
+ * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
+ * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
+ *
+ * This underalignment previously caused a rather obvious crash which went
+ * completely unnoticed due to XXH3_createState() not actually being tested.
+ * Credit to RedSpah for noticing this bug.
+ *
+ * The alignment is done manually: Functions like posix_memalign or _mm_malloc
+ * are avoided: To maintain portability, we would have to write a fallback
+ * like this anyways, and besides, testing for the existence of library
+ * functions without relying on external build tools is impossible.
+ *
+ * The method is simple: Overallocate, manually align, and store the offset
+ * to the original behind the returned pointer.
+ *
+ * Align must be a power of 2 and 8 <= align <= 128.
+ */
+static void* XXH_alignedMalloc(size_t s, size_t align)
+{
+    XXH_ASSERT(align <= 128 && align >= 8); /* range check */
+    XXH_ASSERT((align & (align - 1)) == 0); /* power of 2 */
+    XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
+    {                                       /* Overallocate to make room for manual realignment and an offset byte */
+        xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
+        if (base != NULL)
+        {
+            /*
+             * Get the offset needed to align this pointer.
+             *
+             * Even if the returned pointer is aligned, there will always be
+             * at least one byte to store the offset to the original pointer.
+             */
+            size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
+            /* Add the offset for the now-aligned pointer */
+            xxh_u8* ptr = base + offset;
+
+            XXH_ASSERT((size_t)ptr % align == 0);
+
+            /* Store the offset immediately before the returned pointer. */
+            ptr[-1] = (xxh_u8)offset;
+            return ptr;
+        }
+        return NULL;
+    }
+}
+/*
+ * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
+ * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
+ */
+static void XXH_alignedFree(void* p)
+{
+    if (p != NULL)
+    {
+        xxh_u8* ptr = (xxh_u8*)p;
+        /* Get the offset byte we added in XXH_malloc. */
+        xxh_u8 offset = ptr[-1];
+        /* Free the original malloc'd pointer */
+        xxh_u8* base = ptr - offset;
+        XXH_free(base);
+    }
+}
+XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) { return (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); }
+
+XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
+{
+    XXH_alignedFree(statePtr);
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) { memcpy(dst_state, src_state, sizeof(*dst_state)); }
+
+static void XXH3_64bits_reset_internal(XXH3_state_t* statePtr, XXH64_hash_t seed, const xxh_u8* secret, size_t secretSize)
+{
+    XXH_ASSERT(statePtr != NULL);
+    memset(statePtr, 0, sizeof(*statePtr));
+    statePtr->acc[0] = PRIME32_3;
+    statePtr->acc[1] = PRIME64_1;
+    statePtr->acc[2] = PRIME64_2;
+    statePtr->acc[3] = PRIME64_3;
+    statePtr->acc[4] = PRIME64_4;
+    statePtr->acc[5] = PRIME32_2;
+    statePtr->acc[6] = PRIME64_5;
+    statePtr->acc[7] = PRIME32_1;
+    statePtr->seed = seed;
+    XXH_ASSERT(secret != NULL);
+    statePtr->secret = secret;
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
+    statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr)
+{
+    if (statePtr == NULL)
+        return XXH_ERROR;
+    XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+{
+    if (statePtr == NULL)
+        return XXH_ERROR;
+    XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
+    if (secret == NULL)
+        return XXH_ERROR;
+    if (secretSize < XXH3_SECRET_SIZE_MIN)
+        return XXH_ERROR;
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+    if (statePtr == NULL)
+        return XXH_ERROR;
+    XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
+    XXH3_initCustomSecret(statePtr->customSecret, seed);
+    statePtr->secret = statePtr->customSecret;
+    return XXH_OK;
+}
+
+XXH_FORCE_INLINE void XXH3_consumeStripes(xxh_u64* acc,
+                                          XXH32_hash_t* nbStripesSoFarPtr,
+                                          XXH32_hash_t nbStripesPerBlock,
+                                          const xxh_u8* input,
+                                          size_t totalStripes,
+                                          const xxh_u8* secret,
+                                          size_t secretLimit,
+                                          XXH3_accWidth_e accWidth)
+{
+    XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
+    if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes)
+    {
+        /* need a scrambling operation */
+        size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
+        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth);
+        XXH3_scrambleAcc(acc, secret + secretLimit);
+        XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth);
+        *nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
+    }
+    else
+    {
+        XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth);
+        *nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
+    }
+}
+
+/*
+ * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
+ */
+XXH_FORCE_INLINE XXH_errorcode XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth)
+{
+    if (input == NULL)
+#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
+        return XXH_OK;
+#else
+        return XXH_ERROR;
+#endif
+
+    {
+        const xxh_u8* const bEnd = input + len;
+
+        state->totalLen += len;
+
+        if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE)
+        { /* fill in tmp buffer */
+            XXH_memcpy(state->buffer + state->bufferedSize, input, len);
+            state->bufferedSize += (XXH32_hash_t)len;
+            return XXH_OK;
+        }
+        /* input is now > XXH3_INTERNALBUFFER_SIZE */
+
+#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
+        XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0); /* clean multiple */
+
+        /*
+         * There is some input left inside the internal buffer.
+         * Fill it, then consume it.
+         */
+        if (state->bufferedSize)
+        {
+            size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
+            XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
+            input += loadSize;
+            XXH3_consumeStripes(state->acc, &state->nbStripesSoFar, state->nbStripesPerBlock, state->buffer, XXH3_INTERNALBUFFER_STRIPES,
+                                state->secret, state->secretLimit, accWidth);
+            state->bufferedSize = 0;
+        }
+
+        /* Consume input by full buffer quantities */
+        if (input + XXH3_INTERNALBUFFER_SIZE <= bEnd)
+        {
+            const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
+            do
+            {
+                XXH3_consumeStripes(state->acc, &state->nbStripesSoFar, state->nbStripesPerBlock, input, XXH3_INTERNALBUFFER_STRIPES, state->secret,
+                                    state->secretLimit, accWidth);
+                input += XXH3_INTERNALBUFFER_SIZE;
+            } while (input <= limit);
+        }
+
+        if (input < bEnd)
+        { /* Some remaining input: buffer it */
+            XXH_memcpy(state->buffer, input, (size_t)(bEnd - input));
+            state->bufferedSize = (XXH32_hash_t)(bEnd - input);
+        }
+    }
+
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
+{
+    return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits);
+}
+
+
+XXH_FORCE_INLINE void XXH3_digest_long(XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth)
+{
+    /*
+     * Digest on a local copy. This way, the state remains unaltered, and it can
+     * continue ingesting more input afterwards.
+     */
+    memcpy(acc, state->acc, sizeof(state->acc));
+    if (state->bufferedSize >= STRIPE_LEN)
+    {
+        size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
+        XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
+        XXH3_consumeStripes(acc, &nbStripesSoFar, state->nbStripesPerBlock, state->buffer, totalNbStripes, state->secret, state->secretLimit, accWidth);
+        if (state->bufferedSize % STRIPE_LEN)
+        { /* one last partial stripe */
+            XXH3_accumulate_512(acc, state->buffer + state->bufferedSize - STRIPE_LEN, state->secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth);
+        }
+    }
+    else
+    { /* bufferedSize < STRIPE_LEN */
+        if (state->bufferedSize)
+        { /* one last stripe */
+            xxh_u8 lastStripe[STRIPE_LEN];
+            size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
+            memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
+            memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
+            XXH3_accumulate_512(acc, lastStripe, state->secret + state->secretLimit - XXH_SECRET_LASTACC_START, accWidth);
+        }
+    }
+}
+
+XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t* state)
+{
+    if (state->totalLen > XXH3_MIDSIZE_MAX)
+    {
+        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
+        XXH3_digest_long(acc, state, XXH3_acc_64bits);
+        return XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1);
+    }
+    /* len <= XXH3_MIDSIZE_MAX: short code */
+    if (state->seed)
+        return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+    return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
+}
+
+/* ==========================================
+ * XXH3 128 bits (a.k.a XXH128)
+ * ==========================================
+ * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
+ * even without counting the significantly larger output size.
+ *
+ * For example, extra steps are taken to avoid the seed-dependent collisions
+ * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
+ *
+ * This strength naturally comes at the cost of some speed, especially on short
+ * lengths. Note that longer hashes are about as fast as the 64-bit version
+ * due to it using only a slight modification of the 64-bit loop.
+ *
+ * XXH128 is also more oriented towards 64-bit machines. It is still extremely
+ * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
+ */
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    /* A doubled version of 1to3_64b with different constants. */
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(1 <= len && len <= 3);
+    XXH_ASSERT(secret != NULL);
+    /*
+     * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
+     * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
+     * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
+     */
+    {
+        xxh_u8 const c1 = input[0];
+        xxh_u8 const c2 = input[len >> 1];
+        xxh_u8 const c3 = input[len - 1];
+        xxh_u32 const combinedl = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
+        xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
+        xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret + 4)) + seed;
+        xxh_u64 const bitfliph = (XXH_readLE32(secret + 8) ^ XXH_readLE32(secret + 12)) - seed;
+        xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
+        xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
+        xxh_u64 const mixedl = keyed_lo * PRIME64_1;
+        xxh_u64 const mixedh = keyed_hi * PRIME64_5;
+        XXH128_hash_t h128;
+        h128.low64 = XXH3_avalanche(mixedl);
+        h128.high64 = XXH3_avalanche(mixedh);
+        return h128;
+    }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(4 <= len && len <= 8);
+    seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
+    {
+        xxh_u32 const input_lo = XXH_readLE32(input);
+        xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
+        xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
+        xxh_u64 const bitflip = (XXH_readLE64(secret + 16) ^ XXH_readLE64(secret + 24)) + seed;
+        xxh_u64 const keyed = input_64 ^ bitflip;
+
+        /* Shift len to the left to ensure it is even, this avoids even multiplies. */
+        XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
+
+        m128.high64 += (m128.low64 << 1);
+        m128.low64 ^= (m128.high64 >> 3);
+
+        m128.low64 = XXH_xorshift64(m128.low64, 35);
+        m128.low64 *= 0x9FB21C651E98DF25ULL;
+        m128.low64 = XXH_xorshift64(m128.low64, 28);
+        m128.high64 = XXH3_avalanche(m128.high64);
+        return m128;
+    }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(input != NULL);
+    XXH_ASSERT(secret != NULL);
+    XXH_ASSERT(9 <= len && len <= 16);
+    {
+        xxh_u64 const bitflipl = (XXH_readLE64(secret + 32) ^ XXH_readLE64(secret + 40)) - seed;
+        xxh_u64 const bitfliph = (XXH_readLE64(secret + 48) ^ XXH_readLE64(secret + 56)) + seed;
+        xxh_u64 const input_lo = XXH_readLE64(input);
+        xxh_u64 input_hi = XXH_readLE64(input + len - 8);
+        XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
+        /*
+         * Put len in the middle of m128 to ensure that the length gets mixed to
+         * both the low and high bits in the 128x64 multiply below.
+         */
+        m128.low64 += (xxh_u64)(len - 1) << 54;
+        input_hi ^= bitfliph;
+        /*
+         * Add the high 32 bits of input_hi to the high 32 bits of m128, then
+         * add the long product of the low 32 bits of input_hi and PRIME32_2 to
+         * the high 64 bits of m128.
+         *
+         * The best approach to this operation is different on 32-bit and 64-bit.
+         */
+        if (sizeof(void*) < sizeof(xxh_u64))
+        { /* 32-bit */
+            /*
+             * 32-bit optimized version, which is more readable.
+             *
+             * On 32-bit, it removes an ADC and delays a dependency between the two
+             * halves of m128.high64, but it generates an extra mask on 64-bit.
+             */
+            m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2);
+        }
+        else
+        {
+            /*
+             * 64-bit optimized (albeit more confusing) version.
+             *
+             * Uses some properties of addition and multiplication to remove the mask:
+             *
+             * Let:
+             *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
+             *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
+             *    c = PRIME32_2
+             *
+             *    a + (b * c)
+             * Inverse Property: x + y - x == y
+             *    a + (b * (1 + c - 1))
+             * Distributive Property: x * (y + z) == (x * y) + (x * z)
+             *    a + (b * 1) + (b * (c - 1))
+             * Identity Property: x * 1 == x
+             *    a + b + (b * (c - 1))
+             *
+             * Substitute a, b, and c:
+             *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
+             *
+             * Since input_hi.hi + input_hi.lo == input_hi, we get this:
+             *    input_hi + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
+             */
+            m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2 - 1);
+        }
+        /* m128 ^= XXH_swap64(m128 >> 64); */
+        m128.low64 ^= XXH_swap64(m128.high64);
+
+        { /* 128x64 multiply: h128 = m128 * PRIME64_2; */
+            XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
+            h128.high64 += m128.high64 * PRIME64_2;
+
+            h128.low64 = XXH3_avalanche(h128.low64);
+            h128.high64 = XXH3_avalanche(h128.high64);
+            return h128;
+        }
+    }
+}
+
+/*
+ * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
+ */
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    XXH_ASSERT(len <= 16);
+    {
+        if (len > 8)
+            return XXH3_len_9to16_128b(input, len, secret, seed);
+        if (len >= 4)
+            return XXH3_len_4to8_128b(input, len, secret, seed);
+        if (len)
+            return XXH3_len_1to3_128b(input, len, secret, seed);
+        {
+            XXH128_hash_t h128;
+            xxh_u64 const bitflipl = XXH_readLE64(secret + 64) ^ XXH_readLE64(secret + 72);
+            xxh_u64 const bitfliph = XXH_readLE64(secret + 80) ^ XXH_readLE64(secret + 88);
+            h128.low64 = XXH3_avalanche((PRIME64_1 + seed) ^ bitflipl);
+            h128.high64 = XXH3_avalanche((PRIME64_2 - seed) ^ bitfliph);
+            return h128;
+        }
+    }
+}
+
+/*
+ * A bit slower than XXH3_mix16B, but handles multiply by zero better.
+ */
+XXH_FORCE_INLINE XXH128_hash_t XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, const xxh_u8* secret, XXH64_hash_t seed)
+{
+    acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
+    acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
+    acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
+    acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
+    return acc;
+}
+
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    (void)secretSize;
+    XXH_ASSERT(16 < len && len <= 128);
+
+    {
+        XXH128_hash_t acc;
+        acc.low64 = len * PRIME64_1;
+        acc.high64 = 0;
+        if (len > 32)
+        {
+            if (len > 64)
+            {
+                if (len > 96)
+                {
+                    acc = XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96, seed);
+                }
+                acc = XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
+            }
+            acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
+        }
+        acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
+        {
+            XXH128_hash_t h128;
+            h128.low64 = acc.low64 + acc.high64;
+            h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2);
+            h128.low64 = XXH3_avalanche(h128.low64);
+            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+            return h128;
+        }
+    }
+}
+
+XXH_NO_INLINE XXH128_hash_t XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize, XXH64_hash_t seed)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    (void)secretSize;
+    XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
+
+    {
+        XXH128_hash_t acc;
+        int const nbRounds = (int)len / 32;
+        int i;
+        acc.low64 = len * PRIME64_1;
+        acc.high64 = 0;
+        for (i = 0; i < 4; i++)
+        {
+            acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16, secret + (32 * i), seed);
+        }
+        acc.low64 = XXH3_avalanche(acc.low64);
+        acc.high64 = XXH3_avalanche(acc.high64);
+        XXH_ASSERT(nbRounds >= 4);
+        for (i = 4; i < nbRounds; i++)
+        {
+            acc = XXH128_mix32B(acc, input + (32 * i), input + (32 * i) + 16, secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), seed);
+        }
+        /* last bytes */
+        acc = XXH128_mix32B(acc, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 0ULL - seed);
+
+        {
+            XXH128_hash_t h128;
+            h128.low64 = acc.low64 + acc.high64;
+            h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2);
+            h128.low64 = XXH3_avalanche(h128.low64);
+            h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
+            return h128;
+        }
+    }
+}
+
+XXH_FORCE_INLINE XXH128_hash_t XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
+{
+    XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
+
+    XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits);
+
+    /* converge into final hash */
+    XXH_STATIC_ASSERT(sizeof(acc) == 64);
+    XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+    {
+        XXH128_hash_t h128;
+        h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
+        h128.high64 = XXH3_mergeAccs(acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)len * PRIME64_2));
+        return h128;
+    }
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len)
+{
+    return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret));
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len, const xxh_u8* secret, size_t secretSize)
+{
+    return XXH3_hashLong_128b_internal(input, len, secret, secretSize);
+}
+
+/*
+ * It's important for performance that XXH3_hashLong is not inlined. Not sure
+ * why (uop cache maybe?), but the difference is large and easily measurable.
+ */
+XXH_NO_INLINE XXH128_hash_t XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
+{
+    XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
+    if (seed == 0)
+        return XXH3_hashLong_128b_defaultSecret(input, len);
+    XXH3_initCustomSecret(secret, seed);
+    return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret));
+}
+
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
+{
+    if (len <= 16)
+        return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0);
+    if (len <= 128)
+        return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
+    return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len);
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
+{
+    XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
+    /*
+     * If an action is to be taken if `secret` conditions are not respected,
+     * it should be done here.
+     * For now, it's a contract pre-condition.
+     * Adding a check and a branch here would cost performance at every hash.
+     */
+    if (len <= 16)
+        return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
+    if (len <= 128)
+        return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
+    return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
+{
+    if (len <= 16)
+        return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed);
+    if (len <= 128)
+        return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
+    if (len <= XXH3_MIDSIZE_MAX)
+        return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
+    return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed);
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH128(const void* input, size_t len, XXH64_hash_t seed) { return XXH3_128bits_withSeed(input, len, seed); }
+
+
+/* ===   XXH3 128-bit streaming   === */
+
+/*
+ * All the functions are actually the same as for 64-bit streaming variant.
+ * The only difference is the finalizatiom routine.
+ */
+
+static void XXH3_128bits_reset_internal(XXH3_state_t* statePtr, XXH64_hash_t seed, const xxh_u8* secret, size_t secretSize)
+{
+    XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr)
+{
+    if (statePtr == NULL)
+        return XXH_ERROR;
+    XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
+{
+    if (statePtr == NULL)
+        return XXH_ERROR;
+    XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
+    if (secret == NULL)
+        return XXH_ERROR;
+    if (secretSize < XXH3_SECRET_SIZE_MIN)
+        return XXH_ERROR;
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
+{
+    if (statePtr == NULL)
+        return XXH_ERROR;
+    XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
+    XXH3_initCustomSecret(statePtr->customSecret, seed);
+    statePtr->secret = statePtr->customSecret;
+    return XXH_OK;
+}
+
+XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
+{
+    return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits);
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t* state)
+{
+    if (state->totalLen > XXH3_MIDSIZE_MAX)
+    {
+        XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
+        XXH3_digest_long(acc, state, XXH3_acc_128bits);
+        XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
+        {
+            XXH128_hash_t h128;
+            h128.low64 = XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1);
+            h128.high64 = XXH3_mergeAccs(acc, state->secret + state->secretLimit + STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
+                                         ~((xxh_u64)state->totalLen * PRIME64_2));
+            return h128;
+        }
+    }
+    /* len <= XXH3_MIDSIZE_MAX : short code */
+    if (state->seed)
+        return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
+    return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
+}
+
+/* 128-bit utility functions */
+
+#include <string.h> /* memcmp, memcpy */
+
+/* return : 1 is equal, 0 if different */
+XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
+{
+    /* note : XXH128_hash_t is compact, it has no padding byte */
+    return !(memcmp(&h1, &h2, sizeof(h1)));
+}
+
+/* This prototype is compatible with stdlib's qsort().
+ * return : >0 if *h128_1  > *h128_2
+ *          <0 if *h128_1  < *h128_2
+ *          =0 if *h128_1 == *h128_2  */
+XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
+{
+    XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
+    XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
+    int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
+    /* note : bets that, in most cases, hash values are different */
+    if (hcmp)
+        return hcmp;
+    return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
+}
+
+
+/*======   Canonical representation   ======*/
+XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
+{
+    XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
+    if (XXH_CPU_LITTLE_ENDIAN)
+    {
+        hash.high64 = XXH_swap64(hash.high64);
+        hash.low64 = XXH_swap64(hash.low64);
+    }
+    memcpy(dst, &hash.high64, sizeof(hash.high64));
+    memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
+}
+
+XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src)
+{
+    XXH128_hash_t h;
+    h.high64 = XXH_readBE64(src);
+    h.low64 = XXH_readBE64(src->digest + 8);
+    return h;
+}
+
+/* Pop our optimization override from above */
+#if XXH_VECTOR == XXH_AVX2                                  /* AVX2 */           \
+    && defined(__GNUC__) && !defined(__clang__)             /* GCC, not Clang */ \
+    && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
+#pragma GCC pop_options
+#endif
+
+#endif /* XXH3_H_1397135465 */
\ No newline at end of file
diff --git a/src/glow/detail/xxHash/xxhash.cc b/src/glow/detail/xxHash/xxhash.cc
new file mode 100644
index 0000000000000000000000000000000000000000..c3e5720d61068c15cca2314d8f858d2fe217ac50
--- /dev/null
+++ b/src/glow/detail/xxHash/xxhash.cc
@@ -0,0 +1,43 @@
+/*
+ * xxHash - Extremely Fast Hash algorithm
+ * Copyright (C) 2012-2020 Yann Collet
+ *
+ * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ *    * Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *    * Redistributions in binary form must reproduce the above
+ *      copyright notice, this list of conditions and the following disclaimer
+ *      in the documentation and/or other materials provided with the
+ *      distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You can contact the author at:
+ *   - xxHash homepage: https://www.xxhash.com
+ *   - xxHash source repository: https://github.com/Cyan4973/xxHash
+ */
+
+
+/*
+ * xxhash.c instantiates functions defined in xxhash.h
+ */
+
+#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
+#define XXH_IMPLEMENTATION      /* access definitions */
+
+#include "xxhash.hh"
diff --git a/src/glow/detail/xxHash/xxhash.hh b/src/glow/detail/xxHash/xxhash.hh
new file mode 100644
index 0000000000000000000000000000000000000000..c04a8662bac5c05eb980cc19b7d523ea1f8f6235
--- /dev/null
+++ b/src/glow/detail/xxHash/xxhash.hh
@@ -0,0 +1,2044 @@
+/*
+ * xxHash - Extremely Fast Hash algorithm
+ * Header File
+ * Copyright (C) 2012-2020 Yann Collet
+ *
+ * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ *    * Redistributions of source code must retain the above copyright
+ *      notice, this list of conditions and the following disclaimer.
+ *    * Redistributions in binary form must reproduce the above
+ *      copyright notice, this list of conditions and the following disclaimer
+ *      in the documentation and/or other materials provided with the
+ *      distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You can contact the author at:
+ *   - xxHash homepage: https://www.xxhash.com
+ *   - xxHash source repository: https://github.com/Cyan4973/xxHash
+ */
+
+/* TODO: update */
+/* Notice extracted from xxHash homepage:
+
+xxHash is an extremely fast hash algorithm, running at RAM speed limits.
+It also successfully passes all tests from the SMHasher suite.
+
+Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
+
+Name            Speed       Q.Score   Author
+xxHash          5.4 GB/s     10
+CrapWow         3.2 GB/s      2       Andrew
+MumurHash 3a    2.7 GB/s     10       Austin Appleby
+SpookyHash      2.0 GB/s     10       Bob Jenkins
+SBox            1.4 GB/s      9       Bret Mulvey
+Lookup3         1.2 GB/s      9       Bob Jenkins
+SuperFastHash   1.2 GB/s      1       Paul Hsieh
+CityHash64      1.05 GB/s    10       Pike & Alakuijala
+FNV             0.55 GB/s     5       Fowler, Noll, Vo
+CRC32           0.43 GB/s     9
+MD5-32          0.33 GB/s    10       Ronald L. Rivest
+SHA1-32         0.28 GB/s    10
+
+Q.Score is a measure of quality of the hash function.
+It depends on successfully passing SMHasher test set.
+10 is a perfect score.
+
+Note: SMHasher's CRC32 implementation is not the fastest one.
+Other speed-oriented implementations can be faster,
+especially in combination with PCLMUL instruction:
+https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
+
+A 64-bit version, named XXH64, is available since r35.
+It offers much better speed, but for 64-bit applications only.
+Name     Speed on 64 bits    Speed on 32 bits
+XXH64       13.8 GB/s            1.9 GB/s
+XXH32        6.8 GB/s            6.0 GB/s
+*/
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif
+
+/* ****************************
+ *  INLINE mode
+ ******************************/
+/*!
+ * XXH_INLINE_ALL (and XXH_PRIVATE_API)
+ * Use these build macros to inline xxhash into the target unit.
+ * Inlining improves performance on small inputs, especially when the length is
+ * expressed as a compile-time constant:
+ *
+ *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
+ *
+ * It also keeps xxHash symbols private to the unit, so they are not exported.
+ *
+ * Usage:
+ *     #define XXH_INLINE_ALL
+ *     #include "xxhash.h"
+ *
+ * Do not compile and link xxhash.o as a separate object, as it is not useful.
+ */
+#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) && !defined(XXH_INLINE_ALL_31684351384)
+    /* this section should be traversed only once */
+#define XXH_INLINE_ALL_31684351384
+    /* give access to the advanced API, required to compile implementations */
+#undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
+#define XXH_STATIC_LINKING_ONLY
+    /* make all functions private */
+#undef XXH_PUBLIC_API
+#if defined(__GNUC__)
+#define XXH_PUBLIC_API static __inline __attribute__((unused))
+#elif defined(__cplusplus) || (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
+#define XXH_PUBLIC_API static inline
+#elif defined(_MSC_VER)
+#define XXH_PUBLIC_API static __inline
+#else
+    /* note: this version may generate warnings for unused static functions */
+#define XXH_PUBLIC_API static
+#endif
+
+    /*
+     * This part deals with the special case where a unit wants to inline xxHash,
+     * but "xxhash.h" has previously been included without XXH_INLINE_ALL, such
+     * as part of some previously included *.h header file.
+     * Without further action, the new include would just be ignored,
+     * and functions would effectively _not_ be inlined (silent failure).
+     * The following macros solve this situation by prefixing all inlined names,
+     * avoiding naming collision with previous inclusions.
+     */
+#ifdef XXH_NAMESPACE
+#error "XXH_INLINE_ALL with XXH_NAMESPACE is not supported"
+    /*
+     * Note: Alternative: #undef all symbols (it's a pretty large list).
+     * Without #error: it compiles, but functions are actually not inlined.
+     */
+#endif
+#define XXH_NAMESPACE XXH_INLINE_
+    /*
+     * Some identifiers (enums, type names) are not symbols, but they must
+     * still be renamed to avoid redeclaration.
+     * Alternative solution: do not redeclare them.
+     * However, this requires some #ifdefs, and is a more dispersed action.
+     * Meanwhile, renaming can be achieved in a single block
+     */
+#define XXH_IPREF(Id) XXH_INLINE_##Id
+#define XXH_OK XXH_IPREF(XXH_OK)
+#define XXH_ERROR XXH_IPREF(XXH_ERROR)
+#define XXH_errorcode XXH_IPREF(XXH_errorcode)
+#define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
+#define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
+#define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
+#define XXH32_state_s XXH_IPREF(XXH32_state_s)
+#define XXH32_state_t XXH_IPREF(XXH32_state_t)
+#define XXH64_state_s XXH_IPREF(XXH64_state_s)
+#define XXH64_state_t XXH_IPREF(XXH64_state_t)
+#define XXH3_state_s XXH_IPREF(XXH3_state_s)
+#define XXH3_state_t XXH_IPREF(XXH3_state_t)
+#define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
+    /* Ensure the header is parsed again, even if it was previously included */
+#undef XXHASH_H_5627135585666179
+#undef XXHASH_H_STATIC_13879238742
+#endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
+
+
+/* ****************************************************************
+ *  Stable API
+ *****************************************************************/
+#ifndef XXHASH_H_5627135585666179
+#define XXHASH_H_5627135585666179 1
+
+/* specific declaration modes for Windows */
+#if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
+#if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
+#ifdef XXH_EXPORT
+#define XXH_PUBLIC_API __declspec(dllexport)
+#elif XXH_IMPORT
+#define XXH_PUBLIC_API __declspec(dllimport)
+#endif
+#else
+#define XXH_PUBLIC_API /* do nothing */
+#endif
+#endif
+
+/*!
+ * XXH_NAMESPACE, aka Namespace Emulation:
+ *
+ * If you want to include _and expose_ xxHash functions from within your own
+ * library, but also want to avoid symbol collisions with other libraries which
+ * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
+ * any public symbol from xxhash library with the value of XXH_NAMESPACE
+ * (therefore, avoid empty or numeric values).
+ *
+ * Note that no change is required within the calling program as long as it
+ * includes `xxhash.h`: Regular symbol names will be automatically translated
+ * by this header.
+ */
+#ifdef XXH_NAMESPACE
+#define XXH_CAT(A, B) A##B
+#define XXH_NAME2(A, B) XXH_CAT(A, B)
+#define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
+#define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
+#define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
+#define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
+#define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
+#define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
+#define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
+#define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
+#define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
+#define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
+#define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
+#define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
+#define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
+#define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
+#define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
+#define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
+#define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
+#define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
+#define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
+#endif
+
+
+/* *************************************
+ *  Version
+ ***************************************/
+#define XXH_VERSION_MAJOR 0
+#define XXH_VERSION_MINOR 7
+#define XXH_VERSION_RELEASE 4
+#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR * 100 * 100 + XXH_VERSION_MINOR * 100 + XXH_VERSION_RELEASE)
+    XXH_PUBLIC_API unsigned XXH_versionNumber(void);
+
+
+/* ****************************
+ *  Definitions
+ ******************************/
+#include <stddef.h> /* size_t */
+    typedef enum
+    {
+        XXH_OK = 0,
+        XXH_ERROR
+    } XXH_errorcode;
+
+
+/*-**********************************************************************
+ *  32-bit hash
+ ************************************************************************/
+#if !defined(__VMS) && (defined(__cplusplus) || (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
+#include <stdint.h>
+    typedef uint32_t XXH32_hash_t;
+#else
+#include <limits.h>
+#if UINT_MAX == 0xFFFFFFFFUL
+    typedef unsigned int XXH32_hash_t;
+#else
+#if ULONG_MAX == 0xFFFFFFFFUL
+    typedef unsigned long XXH32_hash_t;
+#else
+#error "unsupported platform: need a 32-bit type"
+#endif
+#endif
+#endif
+
+    /*!
+     * XXH32():
+     *  Calculate the 32-bit hash of sequence "length" bytes stored at memory address "input".
+     *  The memory between input & input+length must be valid (allocated and read-accessible).
+     *  "seed" can be used to alter the result predictably.
+     *  Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
+     *
+     * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
+     * and offers true 64/128 bit hash results. It provides a superior level of
+     * dispersion, and greatly reduces the risks of collisions.
+     */
+    XXH_PUBLIC_API XXH32_hash_t XXH32(const void* input, size_t length, XXH32_hash_t seed);
+
+    /*******   Streaming   *******/
+
+    /*
+     * Streaming functions generate the xxHash value from an incrememtal input.
+     * This method is slower than single-call functions, due to state management.
+     * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
+     *
+     * An XXH state must first be allocated using `XXH*_createState()`.
+     *
+     * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
+     *
+     * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
+     *
+     * The function returns an error code, with 0 meaning OK, and any other value
+     * meaning there is an error.
+     *
+     * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
+     * This function returns the nn-bits hash as an int or long long.
+     *
+     * It's still possible to continue inserting input into the hash state after a
+     * digest, and generate new hash values later on by invoking `XXH*_digest()`.
+     *
+     * When done, release the state using `XXH*_freeState()`.
+     */
+
+    typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */
+    XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
+    XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
+    XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
+
+    XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed);
+    XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t* statePtr, const void* input, size_t length);
+    XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* statePtr);
+
+    /*******   Canonical representation   *******/
+
+    /*
+     * The default return values from XXH functions are unsigned 32 and 64 bit
+     * integers.
+     * This the simplest and fastest format for further post-processing.
+     *
+     * However, this leaves open the question of what is the order on the byte level,
+     * since little and big endian conventions will store the same number differently.
+     *
+     * The canonical representation settles this issue by mandating big-endian
+     * convention, the same convention as human-readable numbers (large digits first).
+     *
+     * When writing hash values to storage, sending them over a network, or printing
+     * them, it's highly recommended to use the canonical representation to ensure
+     * portability across a wider range of systems, present and future.
+     *
+     * The following functions allow transformation of hash values to and from
+     * canonical format.
+     */
+
+    typedef struct
+    {
+        unsigned char digest[4];
+    } XXH32_canonical_t;
+    XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
+    XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
+
+
+#ifndef XXH_NO_LONG_LONG
+/*-**********************************************************************
+ *  64-bit hash
+ ************************************************************************/
+#if !defined(__VMS) && (defined(__cplusplus) || (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
+#include <stdint.h>
+    typedef uint64_t XXH64_hash_t;
+#else
+    /* the following type must have a width of 64-bit */
+    typedef unsigned long long XXH64_hash_t;
+#endif
+
+    /*!
+     * XXH64():
+     * Returns the 64-bit hash of sequence of length @length stored at memory
+     * address @input.
+     * @seed can be used to alter the result predictably.
+     *
+     * This function usually runs faster on 64-bit systems, but slower on 32-bit
+     * systems (see benchmark).
+     *
+     * Note: XXH3 provides competitive speed for both 32-bit and 64-bit systems,
+     * and offers true 64/128 bit hash results. It provides a superior level of
+     * dispersion, and greatly reduces the risks of collisions.
+     */
+    XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
+
+    /*******   Streaming   *******/
+    typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
+    XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
+    XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
+    XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
+
+    XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed);
+    XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t* statePtr, const void* input, size_t length);
+    XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* statePtr);
+
+    /*******   Canonical representation   *******/
+    typedef struct
+    {
+        unsigned char digest[8];
+    } XXH64_canonical_t;
+    XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
+    XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
+
+
+#endif /* XXH_NO_LONG_LONG */
+
+#endif /* XXHASH_H_5627135585666179 */
+
+
+#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
+#define XXHASH_H_STATIC_13879238742
+    /* ****************************************************************************
+     * This section contains declarations which are not guaranteed to remain stable.
+     * They may change in future versions, becoming incompatible with a different
+     * version of the library.
+     * These declarations should only be used with static linking.
+     * Never use them in association with dynamic linking!
+     ***************************************************************************** */
+
+    /*
+     * These definitions are only present to allow static allocation of an XXH
+     * state, for example, on the stack or in a struct.
+     * Never **ever** access members directly.
+     */
+
+    struct XXH32_state_s
+    {
+        XXH32_hash_t total_len_32;
+        XXH32_hash_t large_len;
+        XXH32_hash_t v1;
+        XXH32_hash_t v2;
+        XXH32_hash_t v3;
+        XXH32_hash_t v4;
+        XXH32_hash_t mem32[4];
+        XXH32_hash_t memsize;
+        XXH32_hash_t reserved; /* never read nor write, might be removed in a future version */
+    };                         /* typedef'd to XXH32_state_t */
+
+
+#ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
+
+    struct XXH64_state_s
+    {
+        XXH64_hash_t total_len;
+        XXH64_hash_t v1;
+        XXH64_hash_t v2;
+        XXH64_hash_t v3;
+        XXH64_hash_t v4;
+        XXH64_hash_t mem64[4];
+        XXH32_hash_t memsize;
+        XXH32_hash_t reserved32; /* required for padding anyway */
+        XXH64_hash_t reserved64; /* never read nor write, might be removed in a future version */
+    };                           /* typedef'd to XXH64_state_t */
+
+
+    /*-**********************************************************************
+     *  XXH3
+     *  New experimental hash
+     ************************************************************************/
+
+    /* ************************************************************************
+     * XXH3 is a new hash algorithm featuring:
+     *  - Improved speed for both small and large inputs
+     *  - True 64-bit and 128-bit outputs
+     *  - SIMD acceleration
+     *  - Improved 32-bit viability
+     *
+     * Speed analysis methodology is explained here:
+     *
+     *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
+     *
+     * In general, expect XXH3 to run about ~2x faster on large inputs and >3x
+     * faster on small ones compared to XXH64, though exact differences depend on
+     * the platform.
+     *
+     * The algorithm is portable: Like XXH32 and XXH64, it generates the same hash
+     * on all platforms.
+     *
+     * It benefits greatly from SIMD and 64-bit arithmetic, but does not require it.
+     *
+     * Almost all 32-bit and 64-bit targets that can run XXH32 smoothly can run
+     * XXH3 at competitive speeds, even if XXH64 runs slowly. Further details are
+     * explained in the implementation.
+     *
+     * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
+     * ZVector and scalar targets. This can be controlled with the XXH_VECTOR macro.
+     *
+     * XXH3 offers 2 variants, _64bits and _128bits.
+     * When only 64 bits are needed, prefer calling the _64bits variant, as it
+     * reduces the amount of mixing, resulting in faster speed on small inputs.
+     *
+     * It's also generally simpler to manipulate a scalar return type than a struct.
+     *
+     * The 128-bit version adds additional strength, but it is slightly slower.
+     *
+     * The XXH3 algorithm is still in development.
+     * The results it produces may still change in future versions.
+     *
+     * Results produced by v0.7.x are not comparable with results from v0.7.y.
+     * However, the API is completely stable, and it can safely be used for
+     * ephemeral data (local sessions).
+     *
+     * Avoid storing values in long-term storage until the algorithm is finalized.
+     *
+     * Since v0.7.3, XXH3 has reached "release candidate" status, meaning that, if
+     * everything remains fine, its current format will be "frozen" and become the
+     * final one.
+     *
+     * After which, return values of XXH3 and XXH128 will no longer change in
+     * future versions.
+     *
+     * XXH3's return values will be officially finalized upon reaching v0.8.0.
+     *
+     * The API supports one-shot hashing, streaming mode, and custom secrets.
+     */
+
+#ifdef XXH_NAMESPACE
+#define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
+#define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
+#define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
+
+#define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
+#define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
+#define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
+
+#define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
+#define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
+#define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
+#define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
+#define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
+#endif
+
+    /* XXH3_64bits():
+     * default 64-bit variant, using default secret and default seed of 0.
+     * It's the fastest variant. */
+    XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
+
+/*
+ * XXH3_64bits_withSecret():
+ * It's possible to provide any blob of bytes as a "secret" to generate the hash.
+ * This makes it more difficult for an external actor to prepare an intentional
+ * collision.
+ * The secret *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
+ * It should consist of random bytes.
+ * Avoid trivial sequences, such as repeating sequences and especially '\0',
+ * as this can cancel out itself.
+ * Failure to respect these conditions will result in a poor quality hash.
+ */
+#define XXH3_SECRET_SIZE_MIN 136
+    XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+
+    /*
+     * XXH3_64bits_withSeed():
+     * This variant generates a custom secret on the fly based on the default
+     * secret, altered using the `seed` value.
+     * While this operation is decently fast, note that it's not completely free.
+     * Note: seed==0 produces the same results as XXH3_64bits().
+     */
+    XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
+
+
+    /* streaming 64-bit */
+
+#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11+ */
+#include <stdalign.h>
+#define XXH_ALIGN(n) alignas(n)
+#elif defined(__GNUC__)
+#define XXH_ALIGN(n) __attribute__((aligned(n)))
+#elif defined(_MSC_VER)
+#define XXH_ALIGN(n) __declspec(align(n))
+#else
+#define XXH_ALIGN(n) /* disabled */
+#endif
+
+/* Old GCC versions only accept the attribute after the type in structures. */
+#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
+    && defined(__GNUC__)
+#define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
+#else
+#define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
+#endif
+
+    typedef struct XXH3_state_s XXH3_state_t;
+
+#define XXH3_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
+#define XXH3_INTERNALBUFFER_SIZE 256
+    struct XXH3_state_s
+    {
+        XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
+        /* used to store a custom secret generated from the seed. Makes state larger.
+         * Design might change */
+        XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
+        XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
+        XXH32_hash_t bufferedSize;
+        XXH32_hash_t nbStripesPerBlock;
+        XXH32_hash_t nbStripesSoFar;
+        XXH32_hash_t secretLimit;
+        XXH32_hash_t reserved32;
+        XXH32_hash_t reserved32_2;
+        XXH64_hash_t totalLen;
+        XXH64_hash_t seed;
+        XXH64_hash_t reserved64;
+        /* note: there is some padding after due to alignment on 64 bytes */
+        const unsigned char* secret;
+    }; /* typedef'd to XXH3_state_t */
+
+#undef XXH_ALIGN_MEMBER
+
+    /*
+     * Streaming requires state maintenance.
+     * This operation costs memory and CPU.
+     * As a consequence, streaming is slower than one-shot hashing.
+     * For better performance, prefer one-shot functions whenever possible.
+     */
+    XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
+    XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
+    XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
+
+
+    /*
+     * XXH3_64bits_reset():
+     * Initialize with the default parameters.
+     * The result will be equivalent to `XXH3_64bits()`.
+     */
+    XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
+    /*
+     * XXH3_64bits_reset_withSeed():
+     * Generate a custom secret from `seed`, and store it into `statePtr`.
+     * digest will be equivalent to `XXH3_64bits_withSeed()`.
+     */
+    XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
+    /*
+     * XXH3_64bits_reset_withSecret():
+     * `secret` is referenced, and must outlive the hash streaming session, so
+     * be careful when using stack arrays.
+     * `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`.
+     */
+    XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+
+    XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update(XXH3_state_t* statePtr, const void* input, size_t length);
+    XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest(const XXH3_state_t* statePtr);
+
+
+    /* 128-bit */
+
+#ifdef XXH_NAMESPACE
+#define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
+#define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
+#define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
+#define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
+
+#define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
+#define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
+#define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
+#define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
+#define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
+
+#define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
+#define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
+#define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
+#define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
+#endif
+
+    typedef struct
+    {
+        XXH64_hash_t low64;
+        XXH64_hash_t high64;
+    } XXH128_hash_t;
+
+    XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
+    XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
+    XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed); /* == XXH128() */
+    XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
+
+    XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
+    XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
+    XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
+
+    XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update(XXH3_state_t* statePtr, const void* input, size_t length);
+    XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest(const XXH3_state_t* statePtr);
+
+
+    /* Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
+
+    /*!
+     * XXH128_isEqual():
+     * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
+     */
+    XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
+
+    /*!
+     * XXH128_cmp():
+     *
+     * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
+     *
+     * return: >0 if *h128_1  > *h128_2
+     *         <0 if *h128_1  < *h128_2
+     *         =0 if *h128_1 == *h128_2
+     */
+    XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
+
+
+    /*******   Canonical representation   *******/
+    typedef struct
+    {
+        unsigned char digest[16];
+    } XXH128_canonical_t;
+    XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
+    XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
+
+
+#endif /* XXH_NO_LONG_LONG */
+
+#if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
+#define XXH_IMPLEMENTATION
+#endif
+
+#endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
+
+
+    /* ======================================================================== */
+    /* ======================================================================== */
+    /* ======================================================================== */
+
+
+    /*-**********************************************************************
+     * xxHash implementation
+     *-**********************************************************************
+     * xxHash's implementation used to be found in xxhash.c.
+     *
+     * However, code inlining requires the implementation to be visible to the
+     * compiler, usually within the header.
+     *
+     * As a workaround, xxhash.c used to be included within xxhash.h. This caused
+     * some issues with some build systems, especially ones which treat .c files
+     * as source files.
+     *
+     * Therefore, the implementation is now directly integrated within xxhash.h.
+     * Another small advantage is that xxhash.c is no longer needed in /include.
+     ************************************************************************/
+
+#if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) || defined(XXH_IMPLEMENTATION)) && !defined(XXH_IMPLEM_13a8737387)
+#define XXH_IMPLEM_13a8737387
+
+/* *************************************
+ *  Tuning parameters
+ ***************************************/
+/*!
+ * XXH_FORCE_MEMORY_ACCESS:
+ * By default, access to unaligned memory is controlled by `memcpy()`, which is
+ * safe and portable.
+ *
+ * Unfortunately, on some target/compiler combinations, the generated assembly
+ * is sub-optimal.
+ *
+ * The below switch allow to select a different access method for improved
+ * performance.
+ * Method 0 (default):
+ *     Use `memcpy()`. Safe and portable.
+ * Method 1:
+ *     `__attribute__((packed))` statement. It depends on compiler extensions
+ *     and is therefore not portable.
+ *     This method is safe if your compiler supports it, and *generally* as
+ *     fast or faster than `memcpy`.
+ * Method 2:
+ *     Direct access via cast. This method doesn't depend on the compiler but
+ *     violates the C standard.
+ *     It can generate buggy code on targets which do not support unaligned
+ *     memory accesses.
+ *     But in some circumstances, it's the only known way to get the most
+ *     performance (ie GCC + ARMv6)
+ * Method 3:
+ *     Byteshift. This can generate the best code on old compilers which don't
+ *     inline small `memcpy()` calls, and it might also be faster on big-endian
+ *     systems which lack a native byteswap instruction.
+ * See https://stackoverflow.com/a/32095106/646947 for details.
+ * Prefer these methods in priority order (0 > 1 > 2 > 3)
+ */
+#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
+#if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
+#define XXH_FORCE_MEMORY_ACCESS 2
+#elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
+#define XXH_FORCE_MEMORY_ACCESS 1
+#endif
+#endif
+
+/*!
+ *XXH_ACCEPT_NULL_INPUT_POINTER:
+ * If the input pointer is NULL, xxHash's default behavior is to dereference it,
+ * triggering a segfault.
+ * When this macro is enabled, xxHash actively checks the input for a null pointer.
+ * If it is, the result for null input pointers is the same as a zero-length input.
+ */
+#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
+#define XXH_ACCEPT_NULL_INPUT_POINTER 0
+#endif
+
+/*!
+ * XXH_FORCE_ALIGN_CHECK:
+ * This is a minor performance trick, only useful with lots of very small keys.
+ * It means: check for aligned/unaligned input.
+ * The check costs one initial branch per hash;
+ * Set it to 0 when the input is guaranteed to be aligned or when alignment
+ * doesn't matter for performance.
+ *
+ * This option does not affect XXH3.
+ */
+#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
+#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
+#define XXH_FORCE_ALIGN_CHECK 0
+#else
+#define XXH_FORCE_ALIGN_CHECK 1
+#endif
+#endif
+
+/*!
+ * XXH_NO_INLINE_HINTS:
+ *
+ * By default, xxHash tries to force the compiler to inline almost all internal
+ * functions.
+ *
+ * This can usually improve performance due to reduced jumping and improved
+ * constant folding, but significantly increases the size of the binary which
+ * might not be favorable.
+ *
+ * Additionally, sometimes the forced inlining can be detrimental to performance,
+ * depending on the architecture.
+ *
+ * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
+ * compiler full control on whether to inline or not.
+ *
+ * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
+ * -fno-inline with GCC or Clang, this will automatically be defined.
+ */
+#ifndef XXH_NO_INLINE_HINTS
+#if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
+    || defined(__NO_INLINE__)  /* -O0, -fno-inline */
+#define XXH_NO_INLINE_HINTS 1
+#else
+#define XXH_NO_INLINE_HINTS 0
+#endif
+#endif
+
+/*!
+ * XXH_REROLL:
+ * Whether to reroll XXH32_finalize, and XXH64_finalize,
+ * instead of using an unrolled jump table/if statement loop.
+ *
+ * This is automatically defined on -Os/-Oz on GCC and Clang.
+ */
+#ifndef XXH_REROLL
+#if defined(__OPTIMIZE_SIZE__)
+#define XXH_REROLL 1
+#else
+#define XXH_REROLL 0
+#endif
+#endif
+
+
+/* *************************************
+ *  Includes & Memory related functions
+ ***************************************/
+/*!
+ * Modify the local functions below should you wish to use some other memory
+ * routines for malloc() and free()
+ */
+#include <stdlib.h>
+
+    static void* XXH_malloc(size_t s) { return malloc(s); }
+    static void XXH_free(void* p) { free(p); }
+
+/*! and for memcpy() */
+#include <string.h>
+    static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest, src, size); }
+
+#include <limits.h> /* ULLONG_MAX */
+
+
+/* *************************************
+ *  Compiler Specific Options
+ ***************************************/
+#ifdef _MSC_VER                 /* Visual Studio warning fix */
+#pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
+#endif
+
+#if XXH_NO_INLINE_HINTS /* disable inlining hints */
+#define XXH_FORCE_INLINE static
+#define XXH_NO_INLINE static
+#elif defined(_MSC_VER) /* Visual Studio */
+#define XXH_FORCE_INLINE static __forceinline
+#define XXH_NO_INLINE static __declspec(noinline)
+#else
+#if defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
+#ifdef __GNUC__
+#define XXH_FORCE_INLINE static inline __attribute__((always_inline))
+#define XXH_NO_INLINE static __attribute__((noinline))
+#else
+#define XXH_FORCE_INLINE static inline
+#define XXH_NO_INLINE static
+#endif
+#else
+#define XXH_FORCE_INLINE static
+#define XXH_NO_INLINE static
+#endif /* __STDC_VERSION__ */
+#endif
+
+
+/* *************************************
+ *  Debug
+ ***************************************/
+/*
+ * DEBUGLEVEL is expected to be defined externally, typically via the compiler's
+ * command line options. The value must be a number.
+ */
+#ifndef DEBUGLEVEL
+#define DEBUGLEVEL 0
+#endif
+
+#if (DEBUGLEVEL >= 1)
+#include <assert.h> /* note: can still be disabled with NDEBUG */
+#define XXH_ASSERT(c) assert(c)
+#else
+#define XXH_ASSERT(c) ((void)0)
+#endif
+
+/* note: use after variable declarations */
+#define XXH_STATIC_ASSERT(c)          \
+    do                                \
+    {                                 \
+        enum                          \
+        {                             \
+            XXH_sa = 1 / (int)(!!(c)) \
+        };                            \
+    } while (0)
+
+
+/* *************************************
+ *  Basic Types
+ ***************************************/
+#if !defined(__VMS) && (defined(__cplusplus) || (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
+#include <stdint.h>
+    typedef uint8_t xxh_u8;
+#else
+    typedef unsigned char xxh_u8;
+#endif
+    typedef XXH32_hash_t xxh_u32;
+
+
+    /* ***   Memory access   *** */
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3))
+/*
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
+ * We actually directly use XXH_readLE32 and XXH_readBE32.
+ */
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2))
+
+    /*
+     * Force direct memory access. Only works on CPU which support unaligned memory
+     * access in hardware.
+     */
+    static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*)memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1))
+
+    /*
+     * __pack instructions are safer but compiler specific, hence potentially
+     * problematic for some compilers.
+     *
+     * Currently only defined for GCC and ICC.
+     */
+    typedef union {
+        xxh_u32 u32;
+    } __attribute__((packed)) unalign;
+    static xxh_u32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
+
+#else
+
+    /*
+     * Portable and safe solution. Generally efficient.
+     * see: https://stackoverflow.com/a/32095106/646947
+     */
+    static xxh_u32 XXH_read32(const void* memPtr)
+    {
+        xxh_u32 val;
+        memcpy(&val, memPtr, sizeof(val));
+        return val;
+    }
+
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+
+    /* ***   Endianess   *** */
+    typedef enum
+    {
+        XXH_bigEndian = 0,
+        XXH_littleEndian = 1
+    } XXH_endianess;
+
+/*!
+ * XXH_CPU_LITTLE_ENDIAN:
+ * Defined to 1 if the target is little endian, or 0 if it is big endian.
+ * It can be defined externally, for example on the compiler command line.
+ *
+ * If it is not defined, a runtime check (which is usually constant folded)
+ * is used instead.
+ */
+#ifndef XXH_CPU_LITTLE_ENDIAN
+/*
+ * Try to detect endianness automatically, to avoid the nonstandard behavior
+ * in `XXH_isLittleEndian()`
+ */
+#if defined(_WIN32) /* Windows is always little endian */ \
+    || defined(__LITTLE_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#define XXH_CPU_LITTLE_ENDIAN 1
+#elif defined(__BIG_ENDIAN__) || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#define XXH_CPU_LITTLE_ENDIAN 0
+#else
+    static int XXH_isLittleEndian(void)
+    {
+        /*
+         * Nonstandard, but well-defined behavior in practice.
+         * Don't use static: it is detrimental to performance.
+         */
+        const union {
+            xxh_u32 u;
+            xxh_u8 c[4];
+        } one = {1};
+        return one.c[0];
+    }
+#define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
+#endif
+#endif
+
+
+/* ****************************************
+ *  Compiler-specific Functions and Macros
+ ******************************************/
+#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+
+#ifndef __has_builtin
+#define __has_builtin(x) 0
+#endif
+
+#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateleft64)
+#define XXH_rotl32 __builtin_rotateleft32
+#define XXH_rotl64 __builtin_rotateleft64
+/* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
+#elif defined(_MSC_VER)
+#define XXH_rotl32(x, r) _rotl(x, r)
+#define XXH_rotl64(x, r) _rotl64(x, r)
+#else
+#define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
+#define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
+#endif
+
+#if defined(_MSC_VER) /* Visual Studio */
+#define XXH_swap32 _byteswap_ulong
+#elif XXH_GCC_VERSION >= 403
+#define XXH_swap32 __builtin_bswap32
+#else
+    static xxh_u32 XXH_swap32(xxh_u32 x)
+    {
+        return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff);
+    }
+#endif
+
+
+    /* ***************************
+     *  Memory reads
+     *****************************/
+    typedef enum
+    {
+        XXH_aligned,
+        XXH_unaligned
+    } XXH_alignment;
+
+/*
+ * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
+ *
+ * This is ideal for older compilers which don't inline memcpy.
+ */
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3))
+
+    XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
+    {
+        const xxh_u8* bytePtr = (const xxh_u8*)memPtr;
+        return bytePtr[0] | ((xxh_u32)bytePtr[1] << 8) | ((xxh_u32)bytePtr[2] << 16) | ((xxh_u32)bytePtr[3] << 24);
+    }
+
+    XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
+    {
+        const xxh_u8* bytePtr = (const xxh_u8*)memPtr;
+        return bytePtr[3] | ((xxh_u32)bytePtr[2] << 8) | ((xxh_u32)bytePtr[1] << 16) | ((xxh_u32)bytePtr[0] << 24);
+    }
+
+#else
+    XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); }
+
+    static xxh_u32 XXH_readBE32(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); }
+#endif
+
+    XXH_FORCE_INLINE xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
+    {
+        if (align == XXH_unaligned)
+        {
+            return XXH_readLE32(ptr);
+        }
+        else
+        {
+            return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
+        }
+    }
+
+
+    /* *************************************
+     *  Misc
+     ***************************************/
+    XXH_PUBLIC_API unsigned XXH_versionNumber(void) { return XXH_VERSION_NUMBER; }
+
+
+    /* *******************************************************************
+     *  32-bit hash functions
+     *********************************************************************/
+    static const xxh_u32 PRIME32_1 = 0x9E3779B1U; /* 0b10011110001101110111100110110001 */
+    static const xxh_u32 PRIME32_2 = 0x85EBCA77U; /* 0b10000101111010111100101001110111 */
+    static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU; /* 0b11000010101100101010111000111101 */
+    static const xxh_u32 PRIME32_4 = 0x27D4EB2FU; /* 0b00100111110101001110101100101111 */
+    static const xxh_u32 PRIME32_5 = 0x165667B1U; /* 0b00010110010101100110011110110001 */
+
+    static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
+    {
+        acc += input * PRIME32_2;
+        acc = XXH_rotl32(acc, 13);
+        acc *= PRIME32_1;
+#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
+        /*
+         * UGLY HACK:
+         * This inline assembly hack forces acc into a normal register. This is the
+         * only thing that prevents GCC and Clang from autovectorizing the XXH32
+         * loop (pragmas and attributes don't work for some resason) without globally
+         * disabling SSE4.1.
+         *
+         * The reason we want to avoid vectorization is because despite working on
+         * 4 integers at a time, there are multiple factors slowing XXH32 down on
+         * SSE4:
+         * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
+         *   newer chips!) making it slightly slower to multiply four integers at
+         *   once compared to four integers independently. Even when pmulld was
+         *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
+         *   just to multiply unless doing a long operation.
+         *
+         * - Four instructions are required to rotate,
+         *      movqda tmp,  v // not required with VEX encoding
+         *      pslld  tmp, 13 // tmp <<= 13
+         *      psrld  v,   19 // x >>= 19
+         *      por    v,  tmp // x |= tmp
+         *   compared to one for scalar:
+         *      roll   v, 13    // reliably fast across the board
+         *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
+         *
+         * - Instruction level parallelism is actually more beneficial here because
+         *   the SIMD actually serializes this operation: While v1 is rotating, v2
+         *   can load data, while v3 can multiply. SSE forces them to operate
+         *   together.
+         *
+         * How this hack works:
+         * __asm__(""       // Declare an assembly block but don't declare any instructions
+         *          :       // However, as an Input/Output Operand,
+         *          "+r"    // constrain a read/write operand (+) as a general purpose register (r).
+         *          (acc)   // and set acc as the operand
+         * );
+         *
+         * Because of the 'r', the compiler has promised that seed will be in a
+         * general purpose register and the '+' says that it will be 'read/write',
+         * so it has to assume it has changed. It is like volatile without all the
+         * loads and stores.
+         *
+         * Since the argument has to be in a normal register (not an SSE register),
+         * each time XXH32_round is called, it is impossible to vectorize.
+         */
+        __asm__("" : "+r"(acc));
+#endif
+        return acc;
+    }
+
+    /* mix all bits */
+    static xxh_u32 XXH32_avalanche(xxh_u32 h32)
+    {
+        h32 ^= h32 >> 15;
+        h32 *= PRIME32_2;
+        h32 ^= h32 >> 13;
+        h32 *= PRIME32_3;
+        h32 ^= h32 >> 16;
+        return (h32);
+    }
+
+#define XXH_get32bits(p) XXH_readLE32_align(p, align)
+
+    static xxh_u32 XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
+    {
+#define PROCESS1                               \
+    do                                         \
+    {                                          \
+        h32 += (*ptr++) * PRIME32_5;           \
+        h32 = XXH_rotl32(h32, 11) * PRIME32_1; \
+    } while (0)
+
+#define PROCESS4                               \
+    do                                         \
+    {                                          \
+        h32 += XXH_get32bits(ptr) * PRIME32_3; \
+        ptr += 4;                              \
+        h32 = XXH_rotl32(h32, 17) * PRIME32_4; \
+    } while (0)
+
+        /* Compact rerolled version */
+        if (XXH_REROLL)
+        {
+            len &= 15;
+            while (len >= 4)
+            {
+                PROCESS4;
+                len -= 4;
+            }
+            while (len > 0)
+            {
+                PROCESS1;
+                --len;
+            }
+            return XXH32_avalanche(h32);
+        }
+        else
+        {
+            switch (len & 15) /* or switch(bEnd - p) */
+            {
+            case 12:
+                PROCESS4;
+                /* fallthrough */
+            case 8:
+                PROCESS4;
+                /* fallthrough */
+            case 4:
+                PROCESS4;
+                return XXH32_avalanche(h32);
+
+            case 13:
+                PROCESS4;
+                /* fallthrough */
+            case 9:
+                PROCESS4;
+                /* fallthrough */
+            case 5:
+                PROCESS4;
+                PROCESS1;
+                return XXH32_avalanche(h32);
+
+            case 14:
+                PROCESS4;
+                /* fallthrough */
+            case 10:
+                PROCESS4;
+                /* fallthrough */
+            case 6:
+                PROCESS4;
+                PROCESS1;
+                PROCESS1;
+                return XXH32_avalanche(h32);
+
+            case 15:
+                PROCESS4;
+                /* fallthrough */
+            case 11:
+                PROCESS4;
+                /* fallthrough */
+            case 7:
+                PROCESS4;
+                /* fallthrough */
+            case 3:
+                PROCESS1;
+                /* fallthrough */
+            case 2:
+                PROCESS1;
+                /* fallthrough */
+            case 1:
+                PROCESS1;
+                /* fallthrough */
+            case 0:
+                return XXH32_avalanche(h32);
+            }
+            XXH_ASSERT(0);
+            return h32; /* reaching this point is deemed impossible */
+        }
+    }
+
+    XXH_FORCE_INLINE xxh_u32 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
+    {
+        const xxh_u8* bEnd = input + len;
+        xxh_u32 h32;
+
+#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
+        if (input == NULL)
+        {
+            len = 0;
+            bEnd = input = (const xxh_u8*)(size_t)16;
+        }
+#endif
+
+        if (len >= 16)
+        {
+            const xxh_u8* const limit = bEnd - 15;
+            xxh_u32 v1 = seed + PRIME32_1 + PRIME32_2;
+            xxh_u32 v2 = seed + PRIME32_2;
+            xxh_u32 v3 = seed + 0;
+            xxh_u32 v4 = seed - PRIME32_1;
+
+            do
+            {
+                v1 = XXH32_round(v1, XXH_get32bits(input));
+                input += 4;
+                v2 = XXH32_round(v2, XXH_get32bits(input));
+                input += 4;
+                v3 = XXH32_round(v3, XXH_get32bits(input));
+                input += 4;
+                v4 = XXH32_round(v4, XXH_get32bits(input));
+                input += 4;
+            } while (input < limit);
+
+            h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
+        }
+        else
+        {
+            h32 = seed + PRIME32_5;
+        }
+
+        h32 += (xxh_u32)len;
+
+        return XXH32_finalize(h32, input, len & 15, align);
+    }
+
+
+    XXH_PUBLIC_API XXH32_hash_t XXH32(const void* input, size_t len, XXH32_hash_t seed)
+    {
+#if 0
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH32_state_t state;
+    XXH32_reset(&state, seed);
+    XXH32_update(&state, (const xxh_u8*)input, len);
+    return XXH32_digest(&state);
+
+#else
+
+        if (XXH_FORCE_ALIGN_CHECK)
+        {
+            if ((((size_t)input) & 3) == 0)
+            { /* Input is 4-bytes aligned, leverage the speed benefit */
+                return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
+            }
+        }
+
+        return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+#endif
+    }
+
+
+    /*******   Hash streaming   *******/
+
+    XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) { return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); }
+    XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
+    {
+        XXH_free(statePtr);
+        return XXH_OK;
+    }
+
+    XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) { memcpy(dstState, srcState, sizeof(*dstState)); }
+
+    XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
+    {
+        XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
+        memset(&state, 0, sizeof(state));
+        state.v1 = seed + PRIME32_1 + PRIME32_2;
+        state.v2 = seed + PRIME32_2;
+        state.v3 = seed + 0;
+        state.v4 = seed - PRIME32_1;
+        /* do not write into reserved, planned to be removed in a future version */
+        memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
+        return XXH_OK;
+    }
+
+
+    XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t* state, const void* input, size_t len)
+    {
+        if (input == NULL)
+#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
+            return XXH_OK;
+#else
+            return XXH_ERROR;
+#endif
+
+        {
+            const xxh_u8* p = (const xxh_u8*)input;
+            const xxh_u8* const bEnd = p + len;
+
+            state->total_len_32 += (XXH32_hash_t)len;
+            state->large_len |= (XXH32_hash_t)((len >= 16) | (state->total_len_32 >= 16));
+
+            if (state->memsize + len < 16)
+            { /* fill in tmp buffer */
+                XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
+                state->memsize += (XXH32_hash_t)len;
+                return XXH_OK;
+            }
+
+            if (state->memsize)
+            { /* some data left from previous update */
+                XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16 - state->memsize);
+                {
+                    const xxh_u32* p32 = state->mem32;
+                    state->v1 = XXH32_round(state->v1, XXH_readLE32(p32));
+                    p32++;
+                    state->v2 = XXH32_round(state->v2, XXH_readLE32(p32));
+                    p32++;
+                    state->v3 = XXH32_round(state->v3, XXH_readLE32(p32));
+                    p32++;
+                    state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
+                }
+                p += 16 - state->memsize;
+                state->memsize = 0;
+            }
+
+            if (p <= bEnd - 16)
+            {
+                const xxh_u8* const limit = bEnd - 16;
+                xxh_u32 v1 = state->v1;
+                xxh_u32 v2 = state->v2;
+                xxh_u32 v3 = state->v3;
+                xxh_u32 v4 = state->v4;
+
+                do
+                {
+                    v1 = XXH32_round(v1, XXH_readLE32(p));
+                    p += 4;
+                    v2 = XXH32_round(v2, XXH_readLE32(p));
+                    p += 4;
+                    v3 = XXH32_round(v3, XXH_readLE32(p));
+                    p += 4;
+                    v4 = XXH32_round(v4, XXH_readLE32(p));
+                    p += 4;
+                } while (p <= limit);
+
+                state->v1 = v1;
+                state->v2 = v2;
+                state->v3 = v3;
+                state->v4 = v4;
+            }
+
+            if (p < bEnd)
+            {
+                XXH_memcpy(state->mem32, p, (size_t)(bEnd - p));
+                state->memsize = (unsigned)(bEnd - p);
+            }
+        }
+
+        return XXH_OK;
+    }
+
+
+    XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
+    {
+        xxh_u32 h32;
+
+        if (state->large_len)
+        {
+            h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
+        }
+        else
+        {
+            h32 = state->v3 /* == seed */ + PRIME32_5;
+        }
+
+        h32 += state->total_len_32;
+
+        return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
+    }
+
+
+    /*******   Canonical representation   *******/
+
+    /*
+     * The default return values from XXH functions are unsigned 32 and 64 bit
+     * integers.
+     *
+     * The canonical representation uses big endian convention, the same convention
+     * as human-readable numbers (large digits first).
+     *
+     * This way, hash values can be written into a file or buffer, remaining
+     * comparable across different systems.
+     *
+     * The following functions allow transformation of hash values to and from their
+     * canonical format.
+     */
+    XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
+    {
+        XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
+        if (XXH_CPU_LITTLE_ENDIAN)
+            hash = XXH_swap32(hash);
+        memcpy(dst, &hash, sizeof(*dst));
+    }
+
+    XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) { return XXH_readBE32(src); }
+
+
+#ifndef XXH_NO_LONG_LONG
+
+    /* *******************************************************************
+     *  64-bit hash functions
+     *********************************************************************/
+
+    /*******   Memory access   *******/
+
+    typedef XXH64_hash_t xxh_u64;
+
+
+/*!
+ * XXH_REROLL_XXH64:
+ * Whether to reroll the XXH64_finalize() loop.
+ *
+ * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a
+ * performance gain on 64-bit hosts, as only one jump is required.
+ *
+ * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit
+ * registers, and 64-bit arithmetic needs to be simulated, it isn't beneficial
+ * to unroll. The code becomes ridiculously large (the largest function in the
+ * binary on i386!), and rerolling it saves anywhere from 3kB to 20kB. It is
+ * also slightly faster because it fits into cache better and is more likely
+ * to be inlined by the compiler.
+ *
+ * If XXH_REROLL is defined, this is ignored and the loop is always rerolled.
+ */
+#ifndef XXH_REROLL_XXH64
+#if (defined(__ILP32__) || defined(_ILP32))                                 /* ILP32 is often defined on 32-bit GCC family */ \
+    || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64)        /* x86-64 */                                      \
+         || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */                                     \
+         || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */            \
+         || defined(__mips64__) || defined(__mips64))                                                  /* mips64 */           \
+    || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX)                                                   /* check limits */
+#define XXH_REROLL_XXH64 1
+#else
+#define XXH_REROLL_XXH64 0
+#endif
+#endif /* !defined(XXH_REROLL_XXH64) */
+
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3))
+/*
+ * Manual byteshift. Best for old compilers which don't inline memcpy.
+ * We actually directly use XXH_readLE64 and XXH_readBE64.
+ */
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2))
+
+    /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
+    static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*)memPtr; }
+
+#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1))
+
+    /*
+     * __pack instructions are safer, but compiler specific, hence potentially
+     * problematic for some compilers.
+     *
+     * Currently only defined for GCC and ICC.
+     */
+    typedef union {
+        xxh_u32 u32;
+        xxh_u64 u64;
+    } __attribute__((packed)) unalign64;
+    static xxh_u64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }
+
+#else
+
+    /*
+     * Portable and safe solution. Generally efficient.
+     * see: https://stackoverflow.com/a/32095106/646947
+     */
+    static xxh_u64 XXH_read64(const void* memPtr)
+    {
+        xxh_u64 val;
+        memcpy(&val, memPtr, sizeof(val));
+        return val;
+    }
+
+#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
+
+#if defined(_MSC_VER) /* Visual Studio */
+#define XXH_swap64 _byteswap_uint64
+#elif XXH_GCC_VERSION >= 403
+#define XXH_swap64 __builtin_bswap64
+#else
+    static xxh_u64 XXH_swap64(xxh_u64 x)
+    {
+        return ((x << 56) & 0xff00000000000000ULL) | ((x << 40) & 0x00ff000000000000ULL) | ((x << 24) & 0x0000ff0000000000ULL)
+               | ((x << 8) & 0x000000ff00000000ULL) | ((x >> 8) & 0x00000000ff000000ULL) | ((x >> 24) & 0x0000000000ff0000ULL)
+               | ((x >> 40) & 0x000000000000ff00ULL) | ((x >> 56) & 0x00000000000000ffULL);
+    }
+#endif
+
+
+/* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
+#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 3))
+
+    XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
+    {
+        const xxh_u8* bytePtr = (const xxh_u8*)memPtr;
+        return bytePtr[0] | ((xxh_u64)bytePtr[1] << 8) | ((xxh_u64)bytePtr[2] << 16) | ((xxh_u64)bytePtr[3] << 24) | ((xxh_u64)bytePtr[4] << 32)
+               | ((xxh_u64)bytePtr[5] << 40) | ((xxh_u64)bytePtr[6] << 48) | ((xxh_u64)bytePtr[7] << 56);
+    }
+
+    XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
+    {
+        const xxh_u8* bytePtr = (const xxh_u8*)memPtr;
+        return bytePtr[7] | ((xxh_u64)bytePtr[6] << 8) | ((xxh_u64)bytePtr[5] << 16) | ((xxh_u64)bytePtr[4] << 24) | ((xxh_u64)bytePtr[3] << 32)
+               | ((xxh_u64)bytePtr[2] << 40) | ((xxh_u64)bytePtr[1] << 48) | ((xxh_u64)bytePtr[0] << 56);
+    }
+
+#else
+    XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); }
+
+    static xxh_u64 XXH_readBE64(const void* ptr) { return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); }
+#endif
+
+    XXH_FORCE_INLINE xxh_u64 XXH_readLE64_align(const void* ptr, XXH_alignment align)
+    {
+        if (align == XXH_unaligned)
+            return XXH_readLE64(ptr);
+        else
+            return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
+    }
+
+
+    /*******   xxh64   *******/
+
+    static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
+    static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
+    static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
+    static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL; /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
+    static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL; /* 0b0010011111010100111010110010111100010110010101100110011111000101 */
+
+    static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
+    {
+        acc += input * PRIME64_2;
+        acc = XXH_rotl64(acc, 31);
+        acc *= PRIME64_1;
+        return acc;
+    }
+
+    static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
+    {
+        val = XXH64_round(0, val);
+        acc ^= val;
+        acc = acc * PRIME64_1 + PRIME64_4;
+        return acc;
+    }
+
+    static xxh_u64 XXH64_avalanche(xxh_u64 h64)
+    {
+        h64 ^= h64 >> 33;
+        h64 *= PRIME64_2;
+        h64 ^= h64 >> 29;
+        h64 *= PRIME64_3;
+        h64 ^= h64 >> 32;
+        return h64;
+    }
+
+
+#define XXH_get64bits(p) XXH_readLE64_align(p, align)
+
+    static xxh_u64 XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
+    {
+#define PROCESS1_64                            \
+    do                                         \
+    {                                          \
+        h64 ^= (*ptr++) * PRIME64_5;           \
+        h64 = XXH_rotl64(h64, 11) * PRIME64_1; \
+    } while (0)
+
+#define PROCESS4_64                                        \
+    do                                                     \
+    {                                                      \
+        h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * PRIME64_1;  \
+        ptr += 4;                                          \
+        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; \
+    } while (0)
+
+#define PROCESS8_64                                            \
+    do                                                         \
+    {                                                          \
+        xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
+        ptr += 8;                                              \
+        h64 ^= k1;                                             \
+        h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;     \
+    } while (0)
+
+        /* Rerolled version for 32-bit targets is faster and much smaller. */
+        if (XXH_REROLL || XXH_REROLL_XXH64)
+        {
+            len &= 31;
+            while (len >= 8)
+            {
+                PROCESS8_64;
+                len -= 8;
+            }
+            if (len >= 4)
+            {
+                PROCESS4_64;
+                len -= 4;
+            }
+            while (len > 0)
+            {
+                PROCESS1_64;
+                --len;
+            }
+            return XXH64_avalanche(h64);
+        }
+        else
+        {
+            switch (len & 31)
+            {
+            case 24:
+                PROCESS8_64;
+                /* fallthrough */
+            case 16:
+                PROCESS8_64;
+                /* fallthrough */
+            case 8:
+                PROCESS8_64;
+                return XXH64_avalanche(h64);
+
+            case 28:
+                PROCESS8_64;
+                /* fallthrough */
+            case 20:
+                PROCESS8_64;
+                /* fallthrough */
+            case 12:
+                PROCESS8_64;
+                /* fallthrough */
+            case 4:
+                PROCESS4_64;
+                return XXH64_avalanche(h64);
+
+            case 25:
+                PROCESS8_64;
+                /* fallthrough */
+            case 17:
+                PROCESS8_64;
+                /* fallthrough */
+            case 9:
+                PROCESS8_64;
+                PROCESS1_64;
+                return XXH64_avalanche(h64);
+
+            case 29:
+                PROCESS8_64;
+                /* fallthrough */
+            case 21:
+                PROCESS8_64;
+                /* fallthrough */
+            case 13:
+                PROCESS8_64;
+                /* fallthrough */
+            case 5:
+                PROCESS4_64;
+                PROCESS1_64;
+                return XXH64_avalanche(h64);
+
+            case 26:
+                PROCESS8_64;
+                /* fallthrough */
+            case 18:
+                PROCESS8_64;
+                /* fallthrough */
+            case 10:
+                PROCESS8_64;
+                PROCESS1_64;
+                PROCESS1_64;
+                return XXH64_avalanche(h64);
+
+            case 30:
+                PROCESS8_64;
+                /* fallthrough */
+            case 22:
+                PROCESS8_64;
+                /* fallthrough */
+            case 14:
+                PROCESS8_64;
+                /* fallthrough */
+            case 6:
+                PROCESS4_64;
+                PROCESS1_64;
+                PROCESS1_64;
+                return XXH64_avalanche(h64);
+
+            case 27:
+                PROCESS8_64;
+                /* fallthrough */
+            case 19:
+                PROCESS8_64;
+                /* fallthrough */
+            case 11:
+                PROCESS8_64;
+                PROCESS1_64;
+                PROCESS1_64;
+                PROCESS1_64;
+                return XXH64_avalanche(h64);
+
+            case 31:
+                PROCESS8_64;
+                /* fallthrough */
+            case 23:
+                PROCESS8_64;
+                /* fallthrough */
+            case 15:
+                PROCESS8_64;
+                /* fallthrough */
+            case 7:
+                PROCESS4_64;
+                /* fallthrough */
+            case 3:
+                PROCESS1_64;
+                /* fallthrough */
+            case 2:
+                PROCESS1_64;
+                /* fallthrough */
+            case 1:
+                PROCESS1_64;
+                /* fallthrough */
+            case 0:
+                return XXH64_avalanche(h64);
+            }
+        }
+        /* impossible to reach */
+        XXH_ASSERT(0);
+        return 0; /* unreachable, but some compilers complain without it */
+    }
+
+    XXH_FORCE_INLINE xxh_u64 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
+    {
+        const xxh_u8* bEnd = input + len;
+        xxh_u64 h64;
+
+#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
+        if (input == NULL)
+        {
+            len = 0;
+            bEnd = input = (const xxh_u8*)(size_t)32;
+        }
+#endif
+
+        if (len >= 32)
+        {
+            const xxh_u8* const limit = bEnd - 32;
+            xxh_u64 v1 = seed + PRIME64_1 + PRIME64_2;
+            xxh_u64 v2 = seed + PRIME64_2;
+            xxh_u64 v3 = seed + 0;
+            xxh_u64 v4 = seed - PRIME64_1;
+
+            do
+            {
+                v1 = XXH64_round(v1, XXH_get64bits(input));
+                input += 8;
+                v2 = XXH64_round(v2, XXH_get64bits(input));
+                input += 8;
+                v3 = XXH64_round(v3, XXH_get64bits(input));
+                input += 8;
+                v4 = XXH64_round(v4, XXH_get64bits(input));
+                input += 8;
+            } while (input <= limit);
+
+            h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+            h64 = XXH64_mergeRound(h64, v1);
+            h64 = XXH64_mergeRound(h64, v2);
+            h64 = XXH64_mergeRound(h64, v3);
+            h64 = XXH64_mergeRound(h64, v4);
+        }
+        else
+        {
+            h64 = seed + PRIME64_5;
+        }
+
+        h64 += (xxh_u64)len;
+
+        return XXH64_finalize(h64, input, len, align);
+    }
+
+
+    XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t len, XXH64_hash_t seed)
+    {
+#if 0
+    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
+    XXH64_state_t state;
+    XXH64_reset(&state, seed);
+    XXH64_update(&state, (const xxh_u8*)input, len);
+    return XXH64_digest(&state);
+
+#else
+
+        if (XXH_FORCE_ALIGN_CHECK)
+        {
+            if ((((size_t)input) & 7) == 0)
+            { /* Input is aligned, let's leverage the speed advantage */
+                return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
+            }
+        }
+
+        return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
+
+#endif
+    }
+
+    /*******   Hash Streaming   *******/
+
+    XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) { return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); }
+    XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
+    {
+        XXH_free(statePtr);
+        return XXH_OK;
+    }
+
+    XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) { memcpy(dstState, srcState, sizeof(*dstState)); }
+
+    XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
+    {
+        XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
+        memset(&state, 0, sizeof(state));
+        state.v1 = seed + PRIME64_1 + PRIME64_2;
+        state.v2 = seed + PRIME64_2;
+        state.v3 = seed + 0;
+        state.v4 = seed - PRIME64_1;
+        /* do not write into reserved64, might be removed in a future version */
+        memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
+        return XXH_OK;
+    }
+
+    XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t* state, const void* input, size_t len)
+    {
+        if (input == NULL)
+#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
+            return XXH_OK;
+#else
+            return XXH_ERROR;
+#endif
+
+        {
+            const xxh_u8* p = (const xxh_u8*)input;
+            const xxh_u8* const bEnd = p + len;
+
+            state->total_len += len;
+
+            if (state->memsize + len < 32)
+            { /* fill in tmp buffer */
+                XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
+                state->memsize += (xxh_u32)len;
+                return XXH_OK;
+            }
+
+            if (state->memsize)
+            { /* tmp buffer is full */
+                XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32 - state->memsize);
+                state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64 + 0));
+                state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64 + 1));
+                state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64 + 2));
+                state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64 + 3));
+                p += 32 - state->memsize;
+                state->memsize = 0;
+            }
+
+            if (p + 32 <= bEnd)
+            {
+                const xxh_u8* const limit = bEnd - 32;
+                xxh_u64 v1 = state->v1;
+                xxh_u64 v2 = state->v2;
+                xxh_u64 v3 = state->v3;
+                xxh_u64 v4 = state->v4;
+
+                do
+                {
+                    v1 = XXH64_round(v1, XXH_readLE64(p));
+                    p += 8;
+                    v2 = XXH64_round(v2, XXH_readLE64(p));
+                    p += 8;
+                    v3 = XXH64_round(v3, XXH_readLE64(p));
+                    p += 8;
+                    v4 = XXH64_round(v4, XXH_readLE64(p));
+                    p += 8;
+                } while (p <= limit);
+
+                state->v1 = v1;
+                state->v2 = v2;
+                state->v3 = v3;
+                state->v4 = v4;
+            }
+
+            if (p < bEnd)
+            {
+                XXH_memcpy(state->mem64, p, (size_t)(bEnd - p));
+                state->memsize = (unsigned)(bEnd - p);
+            }
+        }
+
+        return XXH_OK;
+    }
+
+
+    XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
+    {
+        xxh_u64 h64;
+
+        if (state->total_len >= 32)
+        {
+            xxh_u64 const v1 = state->v1;
+            xxh_u64 const v2 = state->v2;
+            xxh_u64 const v3 = state->v3;
+            xxh_u64 const v4 = state->v4;
+
+            h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
+            h64 = XXH64_mergeRound(h64, v1);
+            h64 = XXH64_mergeRound(h64, v2);
+            h64 = XXH64_mergeRound(h64, v3);
+            h64 = XXH64_mergeRound(h64, v4);
+        }
+        else
+        {
+            h64 = state->v3 /*seed*/ + PRIME64_5;
+        }
+
+        h64 += (xxh_u64)state->total_len;
+
+        return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
+    }
+
+
+    /******* Canonical representation   *******/
+
+    XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
+    {
+        XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
+        if (XXH_CPU_LITTLE_ENDIAN)
+            hash = XXH_swap64(hash);
+        memcpy(dst, &hash, sizeof(*dst));
+    }
+
+    XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) { return XXH_readBE64(src); }
+
+
+    /* *********************************************************************
+     *  XXH3
+     *  New generation hash designed for speed on small keys and vectorization
+     ************************************************************************ */
+
+#include "xxh3.hh"
+
+
+#endif /* XXH_NO_LONG_LONG */
+
+
+#endif /* XXH_IMPLEMENTATION */
+
+
+#if defined(__cplusplus)
+}
+#endif