QuaternionT.hh 9.92 KB
Newer Older
Jan Möbius's avatar
Jan Möbius committed
1
2
3
/*===========================================================================*\
 *                                                                           *
 *                              OpenFlipper                                  *
Jan Möbius's avatar
Jan Möbius committed
4
 *      Copyright (C) 2001-2010 by Computer Graphics Group, RWTH Aachen      *
Jan Möbius's avatar
Jan Möbius committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
 *                           www.openflipper.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenFlipper.                                        *
 *                                                                           *
 *  OpenFlipper is free software: you can redistribute it and/or modify      *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenFlipper is distributed in the hope that it will be useful,           *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenFlipper. If not,                                  *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
Jan Möbius's avatar
Jan Möbius committed
37
 *   $Revision$                                                       *
Jan Möbius's avatar
Jan Möbius committed
38
39
40
41
 *   $Author$                                                      *
 *   $Date$                   *
 *                                                                           *
\*===========================================================================*/
Jan Möbius's avatar
 
Jan Möbius committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114



//=============================================================================
//
//  CLASS Quaternion
//
//=============================================================================

#ifndef ACG_QUATERNION_HH
#define ACG_QUATERNION_HH


//== INCLUDES =================================================================

#include "VectorT.hh"
#include "Matrix4x4T.hh"


//== NAMESPACES  ==============================================================

namespace ACG {


//== CLASS DEFINITION =========================================================


/**
    Quaternion class for representing rotations.
*/

template <class Scalar>
class QuaternionT : public VectorT<Scalar,4>
{
public:

#define W Base::values_[0]
#define X Base::values_[1]
#define Y Base::values_[2]
#define Z Base::values_[3]


  typedef VectorT<Scalar,4>    Base;
  typedef QuaternionT<Scalar>  Quaternion;
  typedef VectorT<Scalar,3>    Vec3;
  typedef VectorT<Scalar,4>    Vec4;
  typedef Matrix4x4T<Scalar>   Matrix;


  /// construct from 4 Scalars (default)
  QuaternionT(Scalar _w=1.0, Scalar _x=0.0, Scalar _y=0.0, Scalar _z=0.0)
    : Vec4(_w, _x, _y, _z) {}

  /// construct from 3D point (pure imaginary quaternion)
  QuaternionT(const Vec3& _p)
    : Vec4(0, _p[0], _p[1], _p[2]) {}

  /// construct from 4D vector
  QuaternionT(const Vec4& _p)
    : Vec4(_p[0], _p[1], _p[2], _p[3]) {}

  /// construct from rotation axis and angle (in radians)
  QuaternionT(Vec3 _axis, Scalar _angle)
  {
    _axis.normalize();
    Scalar theta = 0.5 * _angle;
    Scalar sin_theta = sin(theta);
    W = cos(theta);
    X = sin_theta * _axis[0];
    Y = sin_theta * _axis[1];
    Z = sin_theta * _axis[2];
  }

David Bommes's avatar
David Bommes committed
115
116
117
118
  /// construct from rotation matrix (only valid for rotation matrices!)
  template <class MatrixT>
  QuaternionT(const MatrixT& _rot)
  { init_from_matrix( _rot); }
119
  
Jan Möbius's avatar
 
Jan Möbius committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

  /// identity rotation
  void identity() { W=1.0; X=Y=Z=0.0; }


  /// conjugate quaternion
  Quaternion conjugate() const
  { return Quaternion(W, -X, -Y, -Z); }


  /// invert quaternion
  Quaternion invert() const
  { return conjugate()/Base::sqrnorm(); }


  /// quaternion * quaternion
  Quaternion operator*(const Quaternion& _q) const
  { return Quaternion(W*_q.W - X*_q.X - Y*_q.Y - Z*_q.Z,
		      W*_q.X + X*_q.W + Y*_q.Z - Z*_q.Y,
		      W*_q.Y - X*_q.Z + Y*_q.W + Z*_q.X,
		      W*_q.Z + X*_q.Y - Y*_q.X + Z*_q.W); }


  /// quaternion *= quaternion
  Quaternion& operator*=(const Quaternion& _q)
  { return *this = *this * _q; }


  /// rotate vector
149
150
  template <class Vec3T>
  Vec3T rotate(const Vec3T& _v) const
Jan Möbius's avatar
Jan Möbius committed
151
  { 
152
153
    Quaternion q = *this * Quaternion(0,_v[0],_v[1],_v[2]) * conjugate();
    return Vec3T(q[1], q[2], q[3]);
Jan Möbius's avatar
Jan Möbius committed
154
  }
Jan Möbius's avatar
 
Jan Möbius committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226


  /// get rotation axis and angle (only valid for unit quaternions!)
  void axis_angle(Vec3& _axis, Scalar& _angle) const
  {
    if (fabs(W) > 0.999999)
    {
      _axis  = Vec3(1,0,0);
      _angle = 0;
    }
    else
    {
      _angle = 2.0 * acos(W);
      _axis  = Vec3(X, Y, Z).normalize();
    }
  }



  /// cast to rotation matrix
  Matrix rotation_matrix() const
  {
    Scalar
      ww(W*W), xx(X*X), yy(Y*Y), zz(Z*Z), wx(W*X),
      wy(W*Y), wz(W*Z), xy(X*Y), xz(X*Z), yz(Y*Z);

    Matrix m;

    m(0,0) = ww + xx - yy - zz;
    m(1,0) = 2.0*(xy + wz);
    m(2,0) = 2.0*(xz - wy);

    m(0,1) = 2.0*(xy - wz);
    m(1,1) = ww - xx + yy - zz;
    m(2,1) = 2.0*(yz + wx);

    m(0,2) = 2.0*(xz + wy);
    m(1,2) = 2.0*(yz - wx);
    m(2,2) = ww - xx - yy + zz;

    m(0,3) = m(1,3) = m(2,3) = m(3,0) = m(3,1) = m(3,2) = 0.0;
    m(3,3) = 1.0;

    return m;
  }



  /// get matrix for mult from right (Qr = q*r)
  Matrix right_mult_matrix() const
  {
    Matrix m;
    m(0,0) =  W; m(0,1) = -X; m(0,2) = -Y; m(0,3) = -Z;
    m(1,0) =  X; m(1,1) =  W; m(1,2) = -Z; m(1,3) =  Y;
    m(2,0) =  Y; m(2,1) =  Z; m(2,2) =  W; m(2,3) = -X;
    m(3,0) =  Z; m(3,1) = -Y; m(3,2) =  X; m(3,3) =  W;
    return m;
  }


  /// get matrix for mult from left (lQ = l*q)
  Matrix left_mult_matrix() const
  {
    Matrix m;
    m(0,0) =  W; m(0,1) = -X; m(0,2) = -Y; m(0,3) = -Z;
    m(1,0) =  X; m(1,1) =  W; m(1,2) =  Z; m(1,3) = -Y;
    m(2,0) =  Y; m(2,1) = -Z; m(2,2) =  W; m(2,3) =  X;
    m(3,0) =  Z; m(3,1) =  Y; m(3,2) = -X; m(3,3) =  W;
    return m;
  }


227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  /// get quaternion from rotation matrix
  template<class MatrixT>
  void init_from_matrix( const MatrixT& _rot)
  {
    Scalar trace = _rot(0,0) + _rot(1,1) + _rot(2,2); 
    if( trace > 0.0 ) 
    {
      Scalar s = 0.5 / sqrt(trace + 1.0);
      W = 0.25 / s;
      X = ( _rot(2,1) - _rot(1,2) ) * s;
      Y = ( _rot(0,2) - _rot(2,0) ) * s;
      Z = ( _rot(1,0) - _rot(0,1) ) * s;
    } 
    else
    {
      if ( _rot(0,0) > _rot(1,1) && _rot(0,0) > _rot(2,2) )
      {
	Scalar s = 2.0 * sqrt( 1.0 + _rot(0,0) - _rot(1,1) - _rot(2,2));
	W = (_rot(2,1) - _rot(1,2) ) / s;
	X = 0.25 * s;
	Y = (_rot(0,1) + _rot(1,0) ) / s;
	Z = (_rot(0,2) + _rot(2,0) ) / s;
      } 
      else 
	if (_rot(1,1) > _rot(2,2))
	{
	  Scalar s = 2.0 * sqrt( 1.0 + _rot(1,1) - _rot(0,0) - _rot(2,2));
	  W = (_rot(0,2) - _rot(2,0) ) / s;
	  X = (_rot(0,1) + _rot(1,0) ) / s;
	  Y = 0.25 * s;
	  Z = (_rot(1,2) + _rot(2,1) ) / s;
	} 
	else
	{
	  Scalar s = 2.0 * sqrt( 1.0 + _rot(2,2) - _rot(0,0) - _rot(1,1) );
	  W = (_rot(1,0) - _rot(0,1) ) / s;
	  X = (_rot(0,2) + _rot(2,0) ) / s;
	  Y = (_rot(1,2) + _rot(2,1) ) / s;
	  Z = 0.25 * s;
	}
    }
  }


  /// quaternion exponential (for unit quaternions)
David Bommes's avatar
   
David Bommes committed
272
  Quaternion exponential() const
273
274
275
276
277
278
279
280
281
282
283
  {
    Vec3   n(X,Y,Z);
    Scalar theta( n.norm());
    Scalar sin_theta = sin(theta);
    Scalar cos_theta = cos(theta);

    if( theta > 1e-6 )
      n *= sin_theta/theta;
    else
      n = Vec3(0,0,0);

David Bommes's avatar
   
David Bommes committed
284
    return Quaternion( cos_theta, n[0], n[1], n[2]);
285
286
287
288
  }


  /// quaternion logarithm (for unit quaternions)
David Bommes's avatar
   
David Bommes committed
289
  Quaternion logarithm() const
290
  {
David Bommes's avatar
David Bommes committed
291
292
293
294
    // clamp to valid input
    double w = W;
    if( w > 1.0) w = 1.0;
    else if( w < -1.0) w = -1.0;
295

David Bommes's avatar
David Bommes committed
296
    Scalar theta_half = acos(w);
297

David Bommes's avatar
David Bommes committed
298
299
300
301
302
303
304
    Vec3   n(X,Y,Z);
    Scalar n_norm( n.norm());
    
    if( n_norm > 1e-6 )
      n *= theta_half/n_norm;
    else
      n = Vec3(0,0,0);
305

David Bommes's avatar
David Bommes committed
306
    return Quaternion( 0, n[0], n[1], n[2]);
307
308
  }

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  void print_info()
  {
    // get axis, angle and matrix
    Vec3 axis; 
    Scalar angle;
    this->axis_angle( axis, angle);
    Matrix m;
    m = this->rotation_matrix();

    std::cerr << "quaternion : " << (*this)      << std::endl;
    std::cerr << "length     : " << this->norm() << std::endl;
    std::cerr << "axis, angle: " << axis << ", " << angle*180.0/M_PI << "\n";
    std::cerr << "rot matrix :\n";
    std::cerr << m << std::endl;
  }

325

Jan Möbius's avatar
 
Jan Möbius committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#undef W
#undef X
#undef Y
#undef Z
};


typedef QuaternionT<float>  Quaternionf;
typedef QuaternionT<double> Quaterniond;


//=============================================================================
} // namespace ACG
//=============================================================================
#endif // ACG_QUATERNION_HH defined
//=============================================================================