unittests_tutorials.cc 30.1 KB
Newer Older
1
2

#include <gtest/gtest.h>
3
#include <OpenMesh/Core/Utils/PropertyManager.hh>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include <Unittests/unittests_common.hh>
#include <string>
#include <map>
#include "generate_cube.hh"
#include "fill_props.hh"

/*
 * ====================================================================
 * Definition of custom properties related classes
 * ====================================================================
 */

struct MyData
{
  int             ival;
  double          dval;
  bool            bval;
  OpenMesh::Vec4f vec4fval;

  MyData()
    : ival(0), dval(0.0), bval(false)
  { }

  MyData( const MyData& _cpy )
    : ival(_cpy.ival), dval(_cpy.dval), bval(_cpy.bval),
      vec4fval(_cpy.vec4fval)
  { }

  // ---------- assignment

  MyData& operator = (const MyData& _rhs)
  {
    ival = _rhs.ival;
    dval = _rhs.dval;
    bval = _rhs.bval;
    vec4fval = _rhs.vec4fval;
    return *this;
  }

  MyData& operator = (int    _rhs) { ival = _rhs; return *this; }
  MyData& operator = (double _rhs) { dval = _rhs; return *this; }
  MyData& operator = (bool   _rhs) { bval = _rhs; return *this; }
  MyData& operator = (const OpenMesh::Vec4f& _rhs)
  { vec4fval = _rhs; return *this; }

  // ---------- comparison

  bool operator == (const MyData& _rhs) const
  {
    return ival == _rhs.ival
      &&   dval == _rhs.dval
      &&   bval == _rhs.bval
      &&   vec4fval == _rhs.vec4fval;
  }
  bool operator != (const MyData& _rhs) const { return !(*this == _rhs); }
};

typedef std::map< std::string, unsigned int > MyMap;

namespace OpenMesh {
  namespace IO {
    // support persistence for struct MyData
    template <> struct binary<MyData>
    {
      typedef MyData value_type;
      static const bool is_streamable = true;

      // return binary size of the value
      static size_t size_of(void)
      {
        return sizeof(int)+sizeof(double)+sizeof(bool)+sizeof(OpenMesh::Vec4f);
      }

      static size_t size_of(const value_type&)
      {
        return size_of();
      }

      static size_t store(std::ostream& _os, const value_type& _v, bool _swap=false)
      {
        size_t bytes;
        bytes  = IO::store( _os, _v.ival, _swap );
        bytes += IO::store( _os, _v.dval, _swap );
        bytes += IO::store( _os, _v.bval, _swap );
        bytes += IO::store( _os, _v.vec4fval, _swap );
        return _os.good() ? bytes : 0;
      }

      static size_t restore( std::istream& _is, value_type& _v, bool _swap=false)
      {
        size_t bytes;
        bytes  = IO::restore( _is, _v.ival, _swap );
        bytes += IO::restore( _is, _v.dval, _swap );
        bytes += IO::restore( _is, _v.bval, _swap );
        bytes += IO::restore( _is, _v.vec4fval, _swap );
        return _is.good() ? bytes : 0;
      }
    };

    template <> struct binary< MyMap >
    {
      typedef MyMap value_type;
      static const bool is_streamable = true;

      // return generic binary size of self, if known
      static size_t size_of(void) { return UnknownSize; }

      // return binary size of the value
      static size_t size_of(const value_type& _v)
      {
        if (_v.empty())
          return sizeof(unsigned int);

        value_type::const_iterator it = _v.begin();
        unsigned int   N     = _v.size();
        size_t         bytes = IO::size_of(N);
        for(;it!=_v.end(); ++it)
        {
          bytes += IO::size_of( it->first );
          bytes += IO::size_of( it->second );
        }
        return bytes;
      }

      static
      size_t store(std::ostream& _os, const value_type& _v, bool _swap=false)
      {
        size_t   bytes = 0;
        unsigned int N = _v.size();
        value_type::const_iterator it = _v.begin();
        bytes += IO::store( _os, N, _swap );
        for (; it != _v.end() && _os.good(); ++it)
        {
          bytes += IO::store( _os, it->first, _swap );
          bytes += IO::store( _os, it->second, _swap );
        }
        return _os.good() ? bytes : 0;
      }

      static
      size_t restore( std::istream& _is, value_type& _v, bool _swap=false)
      {
        size_t   bytes = 0;
        unsigned int N = 0;
        _v.clear();
        bytes += IO::restore( _is, N, _swap );
Matthias Möller's avatar
Matthias Möller committed
150
151
        value_type::key_type key;
        value_type::mapped_type  val;
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        for (size_t i=0; i<N && _is.good(); ++i)
        {
          bytes += IO::restore( _is, key, _swap );
          bytes += IO::restore( _is, val, _swap );
          _v[key] = val;
        }
        return _is.good() ? bytes : 0;
      }
    };

  }
}

namespace {

class OpenMeshTutorials: public OpenMeshBase {

    protected:

        // This function is called before each test is run
        virtual void SetUp() {

            // Do some initial stuff with the member data here...
        }

        // This function is called after all tests are through
        virtual void TearDown() {

            // Do some final stuff with the member data here...
        }

    // Member already defined in OpenMeshBase
    //Mesh mesh_;
};

/*
 * ====================================================================
 * Classes for unittests
 * ====================================================================
 */

template <class Mesh> class SmootherT
{
public:
  typedef typename Mesh::Point            cog_t;
  typedef OpenMesh::VPropHandleT< cog_t > Property_cog;

public:
  // construct with a given mesh
Jan Möbius's avatar
Jan Möbius committed
201
  explicit SmootherT(Mesh& _mesh)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    : mesh_(_mesh)
  {
    mesh_.add_property( cog_ );
  }
  ~SmootherT()
  {
    mesh_.remove_property( cog_ );
  }
  // smooth mesh _iterations times
  void smooth(unsigned int _iterations)
  {
    for (unsigned int i=0; i < _iterations; ++i)
    {
      std::for_each(mesh_.vertices_begin(),
                    mesh_.vertices_end(),
                    ComputeCOG(mesh_, cog_));
      std::for_each(mesh_.vertices_begin(),
                    mesh_.vertices_end(),
                    SetCOG(mesh_, cog_));
    }
  }

private:
  //--- private classes ---
  class ComputeCOG
  {
  public:
    ComputeCOG(Mesh& _mesh, Property_cog& _cog)
      : mesh_(_mesh), cog_(_cog)
    {}
    void operator()(const typename Mesh::VertexHandle& _vh)
    {
      typename Mesh::VertexVertexIter  vv_it;
      typename Mesh::Scalar            valence(0.0);

      mesh_.property(cog_, _vh) = typename Mesh::Point(0.0, 0.0, 0.0);
      for (vv_it=mesh_.vv_iter(_vh); vv_it.is_valid(); ++vv_it)
      {
        mesh_.property(cog_, _vh) += mesh_.point( *vv_it );
        ++valence;
      }
      mesh_.property(cog_, _vh ) /= valence;
    }
  private:
    Mesh&         mesh_;
    Property_cog& cog_;
  };

  class SetCOG
  {
  public:
    SetCOG(Mesh& _mesh, Property_cog& _cog)
      : mesh_(_mesh), cog_(_cog)
    {}
    void operator()(const typename Mesh::VertexHandle& _vh)
    {
      if (!mesh_.is_boundary(_vh))
        mesh_.set_point( _vh, mesh_.property(cog_, _vh) );
    }
  private:
    Mesh&         mesh_;
    Property_cog& cog_;
  };

  //--- private elements ---
  Mesh&        mesh_;
  Property_cog cog_;
};


/*
 * ====================================================================
 * Specify our traits
 * ====================================================================
 */

struct MyTraits : public OpenMesh::DefaultTraits
{
  HalfedgeAttributes(OpenMesh::Attributes::PrevHalfedge);
};

// Define my personal fancy traits
struct MyFancyTraits : OpenMesh::DefaultTraits
{
  // Let Point and Normal be a vector of doubles
  typedef OpenMesh::Vec3d Point;
  typedef OpenMesh::Vec3d Normal;
  // Already defined in OpenMesh::DefaultTraits
  // HalfedgeAttributes( OpenMesh::Attributes::PrevHalfedge );

  // Uncomment next line to disable attribute PrevHalfedge
  // HalfedgeAttributes( OpenMesh::Attributes::None );
  //
  // or
  //
  // HalfedgeAttributes( 0 );
};

struct MyTraitsWithCOG : public OpenMesh::DefaultTraits
{
  // store barycenter of neighbors in this member
  VertexTraits
  {
  private:
    Point  cog_;
  public:
    VertexT() : cog_( Point(0.0f, 0.0f, 0.0f ) ) { }
    const Point& cog() const { return cog_; }
    void set_cog(const Point& _p) { cog_ = _p; }
  };
};

struct MyTraitsWithStatus : public OpenMesh::DefaultTraits
{
  VertexAttributes(OpenMesh::Attributes::Status);
  FaceAttributes(OpenMesh::Attributes::Status);
  EdgeAttributes(OpenMesh::Attributes::Status);
};

/*
 * ====================================================================
 * Specify our meshes
 * ====================================================================
 */
typedef OpenMesh::PolyMesh_ArrayKernelT<> MyMesh;
typedef OpenMesh::TriMesh_ArrayKernelT<MyTraits> MyMeshWithTraits;
typedef OpenMesh::TriMesh_ArrayKernelT<MyTraits> MyTriMesh;
typedef OpenMesh::TriMesh_ArrayKernelT<MyFancyTraits>  MyFancyTriMesh;
typedef OpenMesh::TriMesh_ArrayKernelT<MyTraitsWithCOG>  MyTriMeshWithCOG;
typedef OpenMesh::PolyMesh_ArrayKernelT<MyTraitsWithStatus> MyMeshWithStatus;

/*
 * ====================================================================
 * Define tests below
 * ====================================================================
 */

/*
 */
TEST_F(OpenMeshTutorials, building_a_cube) {

  MyMesh mesh;

  // generate vertices
  MyMesh::VertexHandle vhandle[8];
  vhandle[0] = mesh.add_vertex(MyMesh::Point(-1, -1,  1));
  vhandle[1] = mesh.add_vertex(MyMesh::Point( 1, -1,  1));
  vhandle[2] = mesh.add_vertex(MyMesh::Point( 1,  1,  1));
  vhandle[3] = mesh.add_vertex(MyMesh::Point(-1,  1,  1));
  vhandle[4] = mesh.add_vertex(MyMesh::Point(-1, -1, -1));
  vhandle[5] = mesh.add_vertex(MyMesh::Point( 1, -1, -1));
  vhandle[6] = mesh.add_vertex(MyMesh::Point( 1,  1, -1));
  vhandle[7] = mesh.add_vertex(MyMesh::Point(-1,  1, -1));

  // generate (quadrilateral) faces
  std::vector<MyMesh::VertexHandle>  face_vhandles;
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[0]);
  face_vhandles.push_back(vhandle[1]);
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[3]);
  mesh.add_face(face_vhandles);

  face_vhandles.clear();
  face_vhandles.push_back(vhandle[7]);
  face_vhandles.push_back(vhandle[6]);
  face_vhandles.push_back(vhandle[5]);
  face_vhandles.push_back(vhandle[4]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[1]);
  face_vhandles.push_back(vhandle[0]);
  face_vhandles.push_back(vhandle[4]);
  face_vhandles.push_back(vhandle[5]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[1]);
  face_vhandles.push_back(vhandle[5]);
  face_vhandles.push_back(vhandle[6]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[3]);
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[6]);
  face_vhandles.push_back(vhandle[7]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[0]);
  face_vhandles.push_back(vhandle[3]);
  face_vhandles.push_back(vhandle[7]);
  face_vhandles.push_back(vhandle[4]);
  mesh.add_face(face_vhandles);

  bool ok = OpenMesh::IO::write_mesh(mesh, "output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'output.off'";
}

TEST_F(OpenMeshTutorials, using_iterators_and_circulators) {
  MyMesh  mesh;

  bool ok = OpenMesh::IO::read_mesh(mesh, "output.off");

  EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";

  // this vector stores the computed centers of gravity
  std::vector<MyMesh::Point>  cogs;
  std::vector<MyMesh::Point>::iterator cog_it;
  cogs.reserve(mesh.n_vertices());

  // smoothing mesh N times
  MyMesh::VertexIter          v_it, v_end(mesh.vertices_end());
  MyMesh::VertexVertexIter    vv_it;
  MyMesh::Point               cog;
  MyMesh::Scalar              valence;
  unsigned int                i, N(100);
  for (i=0; i < N; ++i)
  {
    cogs.clear();
    for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
    {
      cog[0] = cog[1] = cog[2] = valence = 0.0;

      for (vv_it = mesh.vv_iter( *v_it ); vv_it.is_valid(); ++vv_it)
      {
        cog += mesh.point( *vv_it );
        ++valence;
      }
      cogs.push_back(cog / valence);
    }

    for (v_it = mesh.vertices_begin(), cog_it = cogs.begin();
         v_it != v_end; ++v_it, ++cog_it)
      if ( !mesh.is_boundary( *v_it ) )
        mesh.set_point( *v_it, *cog_it );
  }

  // write mesh
  ok = OpenMesh::IO::write_mesh(mesh, "smoothed_output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_output.off'";
}

TEST_F(OpenMeshTutorials, using_custom_properties) {
  MyMesh  mesh;

Max Lyon's avatar
Max Lyon committed
449
450
  bool ok = OpenMesh::IO::read_mesh(mesh, "cube_noisy.off");
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'cube_noisy.off'";
451

452
  const int iterations = 100;
453
454

  {
455
    // Add a vertex property storing the computed centers of gravity
Max Lyon's avatar
Max Lyon committed
456
    auto cog = OpenMesh::VProp<MyMesh::Point>(mesh);
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

    // Smooth the mesh several times
    for (int i = 0; i < iterations; ++i) {
      // Iterate over all vertices to compute centers of gravity
      for (const auto& vh : mesh.vertices()) {
        cog[vh] = {0,0,0};
        int valence = 0;
        // Iterate over all 1-ring vertices around vh
        for (const auto& vvh : mesh.vv_range(vh)) {
          cog[vh] += mesh.point(vvh);
          ++valence;
        }
        cog[vh] /= valence;
      }
      // Move all vertices to the previously computed positions
      for (const auto& vh : mesh.vertices()) {
        mesh.point(vh) = cog[vh];
474
475
      }
    }
476
  } // The cog vertex property is removed from the mesh at the end of this scope
477
478
479
480
481
482
483
484
485
486

  // write mesh
  ok = OpenMesh::IO::write_mesh(mesh, "smoothed_custom_properties_output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_custom_properties_output.off'";
}

TEST_F(OpenMeshTutorials, using_STL_algorithms) {
  MyMeshWithTraits mesh;

Max Lyon's avatar
Max Lyon committed
487
488
  bool ok = OpenMesh::IO::read_mesh(mesh, "cube_noisy.off");
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'cube_noisy.off'";
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

  SmootherT<MyMeshWithTraits> smoother(mesh);
  smoother.smooth(100);

  // write mesh
  ok = OpenMesh::IO::write_mesh(mesh, "smoothed_STL_output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_STL_output.off'";
}

TEST_F(OpenMeshTutorials, using_standard_properties) {
  MyTriMesh mesh;

  mesh.request_vertex_normals();
  EXPECT_TRUE(mesh.has_vertex_normals()) << "Standard vertex property 'Normals' not available";

  OpenMesh::IO::Options opt;
  bool ok = OpenMesh::IO::read_mesh(mesh, "output.off", opt);
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";

  // If the file did not provide vertex normals, then calculate them
  if ( !opt.check( OpenMesh::IO::Options::VertexNormal ) )
  {
    // we need face normals to update the vertex normals
    mesh.request_face_normals();
    // let the mesh update the normals
    mesh.update_normals();
    // dispose the face normals, as we don't need them anymore
    mesh.release_face_normals();
  }

  // move all vertices one unit length along it's normal direction
  for (MyMesh::VertexIter v_it = mesh.vertices_begin();
       v_it != mesh.vertices_end(); ++v_it)
  {
    mesh.set_point( *v_it, mesh.point(*v_it)+mesh.normal(*v_it) );
  }

  // don't need the normals anymore? Remove them!
  mesh.release_vertex_normals();
  // just check if it really works
  EXPECT_FALSE(mesh.has_vertex_normals()) << "Shouldn't have any vertex normals anymore";
}

TEST_F(OpenMeshTutorials, using_mesh_attributes_and_traits) {
  MyFancyTriMesh mesh;

  // Just make sure that point element type is double
  EXPECT_TRUE(typeid( OpenMesh::vector_traits<MyFancyTriMesh::Point>::value_type ) ==
      typeid(double)) << "Data type is wrong";

  // Make sure that normal element type is double
  EXPECT_TRUE(typeid( OpenMesh::vector_traits<MyFancyTriMesh::Normal>::value_type ) ==
      typeid(double)) << "Data type is wrong";

  // Add vertex normals as default property (ref. previous tutorial)
  mesh.request_vertex_normals();
  // Add face normals as default property
  mesh.request_face_normals();

  // load a mesh
  OpenMesh::IO::Options opt;
  bool ok = OpenMesh::IO::read_mesh(mesh, "output.off", opt);
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";

  // If the file did not provide vertex normals, then calculate them
  if ( !opt.check( OpenMesh::IO::Options::VertexNormal ) &&
      mesh.has_face_normals() && mesh.has_vertex_normals() )
  {
    // let the mesh update the normals
    mesh.update_normals();
  }

  // move all vertices one unit length along it's normal direction
  for (MyMesh::VertexIter v_it = mesh.vertices_begin();
      v_it != mesh.vertices_end(); ++v_it)
  {
    mesh.set_point( *v_it, mesh.point(*v_it)+mesh.normal(*v_it) );
  }
}

TEST_F(OpenMeshTutorials, extending_the_mesh_using_traits) {
  MyTriMeshWithCOG mesh;

  bool ok = OpenMesh::IO::read_mesh(mesh, "output.off");
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'output.off'";

  // smoothing mesh N times
  MyTriMeshWithCOG::VertexIter          v_it, v_end(mesh.vertices_end());
  MyTriMeshWithCOG::VertexVertexIter    vv_it;
  MyTriMeshWithCOG::Point               cog;
  MyTriMeshWithCOG::Scalar              valence;
  unsigned int                i, N(100);

  for (i=0; i < N; ++i)
  {
    for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
    {
      cog[0] = cog[1] = cog[2] = valence = 0.0;

      for (vv_it = mesh.vv_iter(*v_it); vv_it.is_valid(); ++vv_it)
      {
        cog += mesh.point( *vv_it );
        ++valence;
      }
      mesh.data(*v_it).set_cog(cog / valence);
    }

    for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it)
      if (!mesh.is_boundary(*v_it))
        mesh.set_point( *v_it, mesh.data(*v_it).cog());
  }

  // write mesh
  ok = OpenMesh::IO::write_mesh(mesh, "smoothed_extended_output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_extended_output.off'";
}

608

609
TEST_F(OpenMeshTutorials, deleting_geometry_elements) {
610
611
612
613
614
615
  Mesh mesh;

  // the request has to be called before a vertex/face/edge can be deleted. it grants access to the status attribute
  mesh.request_face_status();
  mesh.request_edge_status();
  mesh.request_vertex_status();
616
617

  // generate vertices
618
619
620
621
622
623
624
625
626
627
628
  Mesh::VertexHandle vhandle[8];
  Mesh::FaceHandle   fhandle[6];

  vhandle[0] = mesh.add_vertex(Mesh::Point(-1, -1,  1));
  vhandle[1] = mesh.add_vertex(Mesh::Point( 1, -1,  1));
  vhandle[2] = mesh.add_vertex(Mesh::Point( 1,  1,  1));
  vhandle[3] = mesh.add_vertex(Mesh::Point(-1,  1,  1));
  vhandle[4] = mesh.add_vertex(Mesh::Point(-1, -1, -1));
  vhandle[5] = mesh.add_vertex(Mesh::Point( 1, -1, -1));
  vhandle[6] = mesh.add_vertex(Mesh::Point( 1,  1, -1));
  vhandle[7] = mesh.add_vertex(Mesh::Point(-1,  1, -1));
629
630

  // generate (quadrilateral) faces
631
  std::vector<Mesh::VertexHandle>  tmp_face_vhandles;
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
  tmp_face_vhandles.clear();
  tmp_face_vhandles.push_back(vhandle[0]);
  tmp_face_vhandles.push_back(vhandle[1]);
  tmp_face_vhandles.push_back(vhandle[2]);
  tmp_face_vhandles.push_back(vhandle[3]);
  fhandle[0] = mesh.add_face(tmp_face_vhandles);

  tmp_face_vhandles.clear();
  tmp_face_vhandles.push_back(vhandle[7]);
  tmp_face_vhandles.push_back(vhandle[6]);
  tmp_face_vhandles.push_back(vhandle[5]);
  tmp_face_vhandles.push_back(vhandle[4]);
  fhandle[1] = mesh.add_face(tmp_face_vhandles);

  tmp_face_vhandles.clear();
  tmp_face_vhandles.push_back(vhandle[1]);
  tmp_face_vhandles.push_back(vhandle[0]);
  tmp_face_vhandles.push_back(vhandle[4]);
  tmp_face_vhandles.push_back(vhandle[5]);
  fhandle[2] = mesh.add_face(tmp_face_vhandles);

  tmp_face_vhandles.clear();
  tmp_face_vhandles.push_back(vhandle[2]);
  tmp_face_vhandles.push_back(vhandle[1]);
  tmp_face_vhandles.push_back(vhandle[5]);
  tmp_face_vhandles.push_back(vhandle[6]);
  fhandle[3] = mesh.add_face(tmp_face_vhandles);
  tmp_face_vhandles.clear();
  tmp_face_vhandles.push_back(vhandle[3]);
  tmp_face_vhandles.push_back(vhandle[2]);
  tmp_face_vhandles.push_back(vhandle[6]);
  tmp_face_vhandles.push_back(vhandle[7]);
  fhandle[4] = mesh.add_face(tmp_face_vhandles);

  tmp_face_vhandles.clear();
  tmp_face_vhandles.push_back(vhandle[0]);
  tmp_face_vhandles.push_back(vhandle[3]);
  tmp_face_vhandles.push_back(vhandle[7]);
  tmp_face_vhandles.push_back(vhandle[4]);
  fhandle[5] = mesh.add_face(tmp_face_vhandles);

  // And now delete all faces and vertices
  // except face (vh[7], vh[6], vh[5], vh[4])
  // whose handle resides in fhandle[1]

  EXPECT_FALSE(mesh.status(fhandle[0]).deleted()) << "face shouldn't be deleted";
  EXPECT_FALSE(mesh.status(fhandle[1]).deleted()) << "face shouldn't be deleted";
  EXPECT_FALSE(mesh.status(fhandle[2]).deleted()) << "face shouldn't be deleted";
  EXPECT_FALSE(mesh.status(fhandle[3]).deleted()) << "face shouldn't be deleted";
  EXPECT_FALSE(mesh.status(fhandle[4]).deleted()) << "face shouldn't be deleted";
  EXPECT_FALSE(mesh.status(fhandle[5]).deleted()) << "face shouldn't be deleted";

  // Delete face 0
  mesh.delete_face(fhandle[0], false);
  // ... face 2
  mesh.delete_face(fhandle[2], false);
  // ... face 3
  mesh.delete_face(fhandle[3], false);
  // ... face 4
  mesh.delete_face(fhandle[4], false);
  // ... face 5
  mesh.delete_face(fhandle[5], false);

  EXPECT_TRUE(mesh.status(fhandle[0]).deleted()) << "face should be deleted";
  EXPECT_FALSE(mesh.status(fhandle[1]).deleted()) << "face shouldn't be deleted";
  EXPECT_TRUE(mesh.status(fhandle[2]).deleted()) << "face should be deleted";
  EXPECT_TRUE(mesh.status(fhandle[3]).deleted()) << "face should be deleted";
  EXPECT_TRUE(mesh.status(fhandle[4]).deleted()) << "face should be deleted";
  EXPECT_TRUE(mesh.status(fhandle[5]).deleted()) << "face should be deleted";

  // If isolated vertices result in a face deletion
  // they have to be deleted manually. If you want this
  // to happen automatically, change the second parameter
  // to true.
  // Now delete the isolated vertices 0, 1, 2 and 3

  EXPECT_FALSE(mesh.status(vhandle[0]).deleted()) << "vertex shouldn't be deleted";
  EXPECT_FALSE(mesh.status(vhandle[1]).deleted()) << "vertex shouldn't be deleted";
  EXPECT_FALSE(mesh.status(vhandle[2]).deleted()) << "vertex shouldn't be deleted";
  EXPECT_FALSE(mesh.status(vhandle[3]).deleted()) << "vertex shouldn't be deleted";

Jan Möbius's avatar
Jan Möbius committed
713

714
715
716
717
718
  mesh.delete_vertex(vhandle[0], false);
  mesh.delete_vertex(vhandle[1], false);
  mesh.delete_vertex(vhandle[2], false);
  mesh.delete_vertex(vhandle[3], false);

Jan Möbius's avatar
Jan Möbius committed
719

720
721
722
723
724
725
726
727
728
729
730
731
732
733
  EXPECT_TRUE(mesh.status(vhandle[0]).deleted()) << "vertex should be deleted";
  EXPECT_TRUE(mesh.status(vhandle[1]).deleted()) << "vertex should be deleted";
  EXPECT_TRUE(mesh.status(vhandle[2]).deleted()) << "vertex should be deleted";
  EXPECT_TRUE(mesh.status(vhandle[3]).deleted()) << "vertex should be deleted";

  // Delete all elements that are marked as deleted
  // from memory.
  mesh.garbage_collection();

  // write mesh
  bool ok = OpenMesh::IO::write_mesh(mesh, "deleted_output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'deleted_output.off'";
}
734

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

TEST_F(OpenMeshTutorials, storing_custom_properties) {
  MyMesh mesh;

  // generate a geometry
  generate_cube<MyMesh>(mesh);

  // define some custom properties
  OpenMesh::VPropHandleT<float>       vprop_float;
  OpenMesh::EPropHandleT<bool>        eprop_bool;
  OpenMesh::FPropHandleT<std::string> fprop_string;
  OpenMesh::HPropHandleT<MyData>      hprop_mydata;
  OpenMesh::MPropHandleT<MyMap>       mprop_map;

  // registrate them at the mesh object
  mesh.add_property(vprop_float,  "vprop_float");
  mesh.add_property(eprop_bool,   "eprop_bool");
  mesh.add_property(fprop_string, "fprop_string");
  mesh.add_property(hprop_mydata, "hprop_mydata");
  mesh.add_property(mprop_map,    "mprop_map");

  //fill the props
  fill_props(mesh, vprop_float);
  fill_props(mesh, eprop_bool);
  fill_props(mesh, fprop_string);
  fill_props(mesh, hprop_mydata);
  fill_props(mesh, mprop_map);

  EXPECT_TRUE(fill_props(mesh, vprop_float, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, eprop_bool, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, fprop_string, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, hprop_mydata, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, mprop_map, true)) << "property not filled correctly";

  //Set persistent flag
  mesh.property(vprop_float).set_persistent(true);
  EXPECT_TRUE(mesh.property(vprop_float).persistent()) << "property should be persistent";
  mesh.property(eprop_bool).set_persistent(true);
  EXPECT_TRUE(mesh.property(eprop_bool).persistent()) << "property should be persistent";
  mesh.property(fprop_string).set_persistent(true);
  EXPECT_TRUE(mesh.property(fprop_string).persistent()) << "property should be persistent";
  mesh.property(hprop_mydata).set_persistent(true);
  EXPECT_TRUE(mesh.property(hprop_mydata).persistent()) << "property should be persistent";
  mesh.mproperty(mprop_map).set_persistent(true);
  EXPECT_TRUE(mesh.mproperty(mprop_map).persistent()) << "property should be persistent";

  // write mesh
  bool ok = OpenMesh::IO::write_mesh( mesh, "persistence-check.om" );
  EXPECT_TRUE(ok) << "Cannot write mesh to file 'persistent-check.om'";

  // clear mesh
  mesh.clear();

  //Read back mesh
  ok = OpenMesh::IO::read_mesh( mesh, "persistence-check.om" );
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'persistent-check.om'";

  // check props
  EXPECT_TRUE(fill_props(mesh, vprop_float, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, eprop_bool, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, fprop_string, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, hprop_mydata, true)) << "property not filled correctly";
  EXPECT_TRUE(fill_props(mesh, mprop_map, true)) << "property not filled correctly";
}

800
801
802
803
804
805
/*Testcase for code snippet from flipping edges in triangle meshes
 * */
TEST_F(OpenMeshTutorials, flipping_edges) {
  Mesh mesh;
  // Add some vertices
  Mesh::VertexHandle vhandle[4];
806
807
808
809
  vhandle[0] = mesh.add_vertex(Mesh::Point(0, 0, 0));
  vhandle[1] = mesh.add_vertex(Mesh::Point(0, 1, 0));
  vhandle[2] = mesh.add_vertex(Mesh::Point(1, 1, 0));
  vhandle[3] = mesh.add_vertex(Mesh::Point(1, 0, 0));
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
  // Add two faces
  std::vector<Mesh::VertexHandle> face_vhandles;
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[1]);
  face_vhandles.push_back(vhandle[0]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[0]);
  face_vhandles.push_back(vhandle[3]);
  mesh.add_face(face_vhandles);
  // Now the edge adjacent to the two faces connects
  // vertex vhandle[0] and vhandle[2].
  // Find this edge and then flip it
  for(Mesh::EdgeIter it = mesh.edges_begin(); it != mesh.edges_end(); ++it) {
    if(!mesh.is_boundary(*it)) {
      // Flip edge
827
828
      EXPECT_EQ(vhandle[2].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,0)).idx()) << "expected vertex handle 2!" ;
      EXPECT_EQ(vhandle[0].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,1)).idx()) << "expected vertex handle 0!" ;
829
      mesh.flip(*it);
830
831
      EXPECT_EQ(vhandle[1].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,0)).idx()) << "expected vertex handle 1 (did the flip work?)!" ;
      EXPECT_EQ(vhandle[3].idx(), mesh.to_vertex_handle(mesh.halfedge_handle(*it,1)).idx()) << "expected vertex handle 3 (did the flip work?)!" ;
832
833
834
835
836
837
838
839
840
841
842
843
844
    }
  }
  // The edge now connects vertex vhandle[1] and vhandle[3].
}

/*Testcase for code snippet from collapsing edges in triangle meshes
 * */
TEST_F(OpenMeshTutorials, collapsing_edges) {
  PolyMesh mesh;
  mesh.request_vertex_status();
  mesh.request_edge_status();
  // Add some vertices as in the illustration above
  PolyMesh::VertexHandle vhandle[7];
845
846
847
848
849
850
851
  vhandle[0] = mesh.add_vertex(PolyMesh::Point(-1, 1, 0));
  vhandle[1] = mesh.add_vertex(PolyMesh::Point(-1, 3, 0));
  vhandle[2] = mesh.add_vertex(PolyMesh::Point(0, 0, 0));
  vhandle[3] = mesh.add_vertex(PolyMesh::Point(0, 2, 0));
  vhandle[4] = mesh.add_vertex(PolyMesh::Point(0, 4, 0));
  vhandle[5] = mesh.add_vertex(PolyMesh::Point(1, 1, 0));
  vhandle[6] = mesh.add_vertex(PolyMesh::Point(1, 3, 0));
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
  // Add three quad faces
  std::vector<PolyMesh::VertexHandle> face_vhandles;
  face_vhandles.push_back(vhandle[1]);
  face_vhandles.push_back(vhandle[0]);
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[3]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[1]);
  face_vhandles.push_back(vhandle[3]);
  face_vhandles.push_back(vhandle[5]);
  face_vhandles.push_back(vhandle[4]);
  mesh.add_face(face_vhandles);
  face_vhandles.clear();
  face_vhandles.push_back(vhandle[3]);
  face_vhandles.push_back(vhandle[2]);
  face_vhandles.push_back(vhandle[6]);
  face_vhandles.push_back(vhandle[5]);
  mesh.add_face(face_vhandles);
  // Now find the edge between vertex vhandle[2]
  // and vhandle[3]
  for(PolyMesh::HalfedgeIter it = mesh.halfedges_begin(); it != mesh.halfedges_end(); ++it) {
    if( mesh.to_vertex_handle(*it) == vhandle[3] &&
        mesh.from_vertex_handle(*it) == vhandle[2])
    {
      // Collapse edge
      mesh.collapse(*it);
      break;
    }
  }
  // Our mesh now looks like in the illustration above after the collapsing.
}

Max Lyon's avatar
Max Lyon committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
TEST_F(OpenMeshTutorials, using_smart_handles_and_smart_ranges) {
  MyMesh  mesh;

  bool ok = OpenMesh::IO::read_mesh(mesh, "cube_noisy.off");
  EXPECT_TRUE(ok) << "Cannot read mesh from file 'cube_noisy.off'";

  const int iterations = 100;

  {
    // Add a vertex property storing the laplace vector
    auto laplace = OpenMesh::VProp<MyMesh::Point>(mesh);

    // Add a vertex property storing the laplace of the laplace
    auto bi_laplace = OpenMesh::VProp<MyMesh::Point>(mesh);

    // Get a propertymanager of the points property of the mesh to use as functor
    auto points = OpenMesh::getPointsProperty(mesh);

    // Smooth the mesh several times
    for (int i = 0; i < iterations; ++i) {
      // Iterate over all vertices to compute laplace vector
      for (const auto& vh : mesh.vertices())
        laplace(vh) = vh.vertices().avg(points) - points(vh);

      // Iterate over all vertices to compte update vectors as the negative of the laplace of the laplace damped by 0.5
      for (const auto& vh : mesh.vertices())
        bi_laplace(vh) =  (vh.vertices().avg(laplace) - laplace(vh));

      // update points
      for (const auto& vh : mesh.vertices())
        points(vh) += -0.5 * bi_laplace(vh);
    }
  } // The laplace and update properties are removed is removed from the mesh at the end of this scope.

  // write mesh
  ok = OpenMesh::IO::write_mesh(mesh, "smoothed_smart_output.off");

  EXPECT_TRUE(ok) << "Cannot write mesh to file 'smoothed_smart_output.off'";
}

925
}