HexahedralMeshTopologyKernel.hh 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

#ifndef HEXAHEDRALMESHTOPOLOGYKERNEL_HH
#define HEXAHEDRALMESHTOPOLOGYKERNEL_HH

#include <set>

48
#include "../Core/TopologyKernel.hh"
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include "HexahedralMeshIterators.hh"

namespace OpenVolumeMesh {

/**
 * \class HexahedralMeshTopologyKernel A data structure basing on PolyhedralMesh with specializations for hexahedra.
 *
 * The hexahedron has an induced "virtual" coordinate system. This supposes
 * the incident half-faces to be given in a specific order.
 * See the following figure for an illustration of the induced
 * coordinate system.
 *
 * \image html induced_coordsys.png
 *
 * The abbreviations XF, XB, etc. are short for
 *
 * \li \c XF: X-axis front face
 * \li \c XB: X-axis back face
 * \li \c YF: Y-axis front face
 * \li \c ...
 *
 * The axes refer to the intrinsic "virtual" axes of the hexahedron.
 * The incident half-faces have to be defined in the following order:
 *
 * \li \c 1. XF
 * \li \c 2. XB
 * \li \c 3. YF
 * \li \c 4. YB
 * \li \c 5. ZF
 * \li \c 6. ZB
 */

81
class HexahedralMeshTopologyKernel : public TopologyKernel {
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
public:

    // Orientation constants
    static const unsigned char XF = 0;
    static const unsigned char XB = 1;
    static const unsigned char YF = 2;
    static const unsigned char YB = 3;
    static const unsigned char ZF = 4;
    static const unsigned char ZB = 5;
    static const unsigned char INVALID = 6;

    static inline unsigned char opposite_orientation(const unsigned char _d) {
        return (_d % 2 == 0 ? _d + 1 : _d - 1);
    }

    // Constructor
    HexahedralMeshTopologyKernel();

    // Destructor
    ~HexahedralMeshTopologyKernel();

    // Overridden function
    virtual FaceHandle add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck = true);

    // Overridden function
    virtual FaceHandle add_face(const std::vector<VertexHandle>& _vertices);

    /// Overridden function
    virtual CellHandle add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck = true,
            bool _reorderFaces = false);

    // ======================= Specialized Iterators =============================

115
116
117
    friend class CellSheetCellIter;
    friend class HalfFaceSheetHalfFaceIter;
    friend class OutsideNeighborHalfFaceIter;
118

119
120
121
    typedef class CellSheetCellIter CellSheetCellIter;
    typedef class HalfFaceSheetHalfFaceIter HalfFaceSheetHalfFaceIter;
    typedef class OutsideNeighborHalfFaceIter OutsideNeighborHalfFaceIter;
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    CellSheetCellIter csc_iter(const CellHandle& _ref_h, const unsigned char _orthDir) const {
        return CellSheetCellIter(_ref_h, _orthDir, this);
    }

    HalfFaceSheetHalfFaceIter hfshf_iter(const HalfFaceHandle& _ref_h) const {
        return HalfFaceSheetHalfFaceIter(_ref_h, this);
    }

    OutsideNeighborHalfFaceIter onhf_iter(const HalfFaceHandle& _ref_h) const {
        return OutsideNeighborHalfFaceIter(_ref_h, this);
    }

    // ======================= Connectivity functions =============================

    inline HalfFaceHandle opposite_halfface_handle_in_cell(const HalfFaceHandle& _hfh, const CellHandle& _ch) {

139
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
140
141
142
143
144
145
146
147

        if(orientation(_hfh, _ch) == XF) return xback_halfface(_ch);
        if(orientation(_hfh, _ch) == XB) return xfront_halfface(_ch);
        if(orientation(_hfh, _ch) == YF) return yback_halfface(_ch);
        if(orientation(_hfh, _ch) == YB) return yfront_halfface(_ch);
        if(orientation(_hfh, _ch) == ZF) return zback_halfface(_ch);
        if(orientation(_hfh, _ch) == ZB) return zfront_halfface(_ch);

148
        return TopologyKernel::InvalidHalfFaceHandle;
149
150
151
152
    }

    inline HalfFaceHandle xfront_halfface(const CellHandle& _ch) const {

153
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
154

155
        return TopologyKernel::cell(_ch).halffaces()[XF];
156
157
158
159
    }

    inline HalfFaceHandle xback_halfface(const CellHandle& _ch) const {

160
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
161

162
        return TopologyKernel::cell(_ch).halffaces()[XB];
163
164
165
166
    }

    inline HalfFaceHandle yfront_halfface(const CellHandle& _ch) const {

167
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
168

169
        return TopologyKernel::cell(_ch).halffaces()[YF];
170
171
172
173
    }

    inline HalfFaceHandle yback_halfface(const CellHandle& _ch) const {

174
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
175

176
        return TopologyKernel::cell(_ch).halffaces()[YB];
177
178
179
180
    }

    inline HalfFaceHandle zfront_halfface(const CellHandle& _ch) const {

181
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
182

183
        return TopologyKernel::cell(_ch).halffaces()[ZF];
184
185
186
187
    }

    inline HalfFaceHandle zback_halfface(const CellHandle& _ch) const {

188
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
189

190
        return TopologyKernel::cell(_ch).halffaces()[ZB];
191
192
193
194
    }

    unsigned char orientation(const HalfFaceHandle& _hfh, const CellHandle& _ch) const {

195
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
196

197
        std::vector<HalfFaceHandle> halffaces = TopologyKernel::cell(_ch).halffaces();
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        for(unsigned int i = 0; i < halffaces.size(); ++i) {
            if(halffaces[i] == _hfh) return (unsigned char)i;
        }

        return INVALID;
    }

    static inline unsigned char orthogonal_orientation(const unsigned char _o1, const unsigned char _o2) {

        if(_o1 == XF && _o2 == YF) return ZF;
        if(_o1 == XF && _o2 == YB) return ZB;
        if(_o1 == XF && _o2 == ZF) return YB;
        if(_o1 == XF && _o2 == ZB) return YF;
        if(_o1 == XB && _o2 == YF) return ZB;
        if(_o1 == XB && _o2 == YB) return ZF;
        if(_o1 == XB && _o2 == ZF) return YF;
        if(_o1 == XB && _o2 == ZB) return YB;

        if(_o1 == YF && _o2 == XF) return ZB;
        if(_o1 == YF && _o2 == XB) return ZF;
        if(_o1 == YF && _o2 == ZF) return XF;
        if(_o1 == YF && _o2 == ZB) return XB;
        if(_o1 == YB && _o2 == XF) return ZF;
        if(_o1 == YB && _o2 == XB) return ZB;
        if(_o1 == YB && _o2 == ZF) return XB;
        if(_o1 == YB && _o2 == ZB) return XF;

        if(_o1 == ZF && _o2 == YF) return XB;
        if(_o1 == ZF && _o2 == YB) return XF;
        if(_o1 == ZF && _o2 == XF) return YF;
        if(_o1 == ZF && _o2 == XB) return YB;
        if(_o1 == ZB && _o2 == YF) return XF;
        if(_o1 == ZB && _o2 == YB) return XB;
        if(_o1 == ZB && _o2 == XF) return YB;
        if(_o1 == ZB && _o2 == XB) return YF;

        return INVALID;

    }

    inline HalfFaceHandle get_oriented_halfface(const unsigned char _o, const CellHandle& _ch) const {

        if(_o == XF) return xfront_halfface(_ch);
        if(_o == XB) return xback_halfface(_ch);
        if(_o == YF) return yfront_halfface(_ch);
        if(_o == YB) return yback_halfface(_ch);
        if(_o == ZF) return zfront_halfface(_ch);
        if(_o == ZB) return zback_halfface(_ch);
246
        return TopologyKernel::InvalidHalfFaceHandle;
247
248
249
250
    }

    HalfFaceHandle adjacent_halfface_on_sheet(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

251
        if(!TopologyKernel::has_bottom_up_adjacencies()) {
252
            std::cerr << "No bottom-up adjacencies computed so far, could not get adjacent halfface on sheet!" << std::endl;
253
            return TopologyKernel::InvalidHalfFaceHandle;
254
255
256
257
258
259
260
        }

        HalfFaceHandle n_hf = _hfh;
        HalfEdgeHandle n_he = _heh;

        // Try the 1st way
        while(true) {
261
262
263
264
265
266
267
268
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, n_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            n_hf = TopologyKernel::opposite_halfface_handle(n_hf);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            HalfEdgeHandle o_he = TopologyKernel::opposite_halfedge_handle(n_he);
            if(o_he == TopologyKernel::InvalidHalfEdgeHandle) break;
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, o_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
269
270
271
            else return n_hf;
        }

272
273
        n_hf = TopologyKernel::opposite_halfface_handle(_hfh);
        n_he = TopologyKernel::opposite_halfedge_handle(_heh);
274
275
276

        // Try the 2nd way
        while(true) {
277
278
279
280
281
282
283
284
285
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, n_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            n_hf = TopologyKernel::opposite_halfface_handle(n_hf);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            HalfEdgeHandle o_he = TopologyKernel::opposite_halfedge_handle(n_he);
            if(o_he == TopologyKernel::InvalidHalfEdgeHandle) break;
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, o_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            else return TopologyKernel::opposite_halfface_handle(n_hf);
286
287
        }

288
        return TopologyKernel::InvalidHalfFaceHandle;
289
290
291
292
    }

    HalfFaceHandle adjacent_halfface_on_surface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

293
        for(OpenVolumeMesh::HalfEdgeHalfFaceIter hehf_it = TopologyKernel::hehf_iter(_heh);
294
295
                hehf_it.valid(); ++hehf_it) {
            if(*hehf_it == _hfh) continue;
296
            if(TopologyKernel::is_boundary(*hehf_it)) {
297
298
                return *hehf_it;
            }
299
300
            if(TopologyKernel::is_boundary(TopologyKernel::opposite_halfface_handle(*hehf_it))) {
                return TopologyKernel::opposite_halfface_handle(*hehf_it);
301
302
            }
        }
303
        return TopologyKernel::InvalidHalfFaceHandle;
304
305
306
307
    }

    HalfFaceHandle neighboring_outside_halfface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

308
        if(!TopologyKernel::has_bottom_up_adjacencies()) {
309
            std::cerr << "No bottom-up adjacencies computed so far, could not get neighboring outside halfface!" << std::endl;
310
            return TopologyKernel::InvalidHalfFaceHandle;
311
312
        }

313
        for(OpenVolumeMesh::HalfEdgeHalfFaceIter hehf_it = TopologyKernel::hehf_iter(_heh);
314
315
                hehf_it; ++hehf_it) {
            if(*hehf_it == _hfh) continue;
316
317
318
            if(TopologyKernel::is_boundary(*hehf_it)) return *hehf_it;
            if(TopologyKernel::is_boundary(TopologyKernel::opposite_halfface_handle(*hehf_it)))
                return TopologyKernel::opposite_halfface_handle(*hehf_it);
319
320
        }

321
        return TopologyKernel::InvalidHalfFaceHandle;
322
323
324
325
326
327
328
329
330
331
332
333
    }

private:

    const HalfFaceHandle& get_adjacent_halfface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh,
            const std::vector<HalfFaceHandle>& _halffaces) const;

};

} // Namespace OpenVolumeMesh

#endif /* HEXAHEDRALMESHTOPOLOGYKERNEL_HH */