HexahedralMeshTopologyKernel.hh 13.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*===========================================================================*\
 *                                                                           *
 *                            OpenVolumeMesh                                 *
 *        Copyright (C) 2011 by Computer Graphics Group, RWTH Aachen         *
 *                        www.openvolumemesh.org                             *
 *                                                                           *
 *---------------------------------------------------------------------------*
 *  This file is part of OpenVolumeMesh.                                     *
 *                                                                           *
 *  OpenVolumeMesh is free software: you can redistribute it and/or modify   *
 *  it under the terms of the GNU Lesser General Public License as           *
 *  published by the Free Software Foundation, either version 3 of           *
 *  the License, or (at your option) any later version with the              *
 *  following exceptions:                                                    *
 *                                                                           *
 *  If other files instantiate templates or use macros                       *
 *  or inline functions from this file, or you compile this file and         *
 *  link it with other files to produce an executable, this file does        *
 *  not by itself cause the resulting executable to be covered by the        *
 *  GNU Lesser General Public License. This exception does not however       *
 *  invalidate any other reasons why the executable file might be            *
 *  covered by the GNU Lesser General Public License.                        *
 *                                                                           *
 *  OpenVolumeMesh is distributed in the hope that it will be useful,        *
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of           *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *
 *  GNU Lesser General Public License for more details.                      *
 *                                                                           *
 *  You should have received a copy of the GNU LesserGeneral Public          *
 *  License along with OpenVolumeMesh.  If not,                              *
 *  see <http://www.gnu.org/licenses/>.                                      *
 *                                                                           *
\*===========================================================================*/

/*===========================================================================*\
 *                                                                           *
 *   $Revision$                                                         *
 *   $Date$                    *
 *   $LastChangedBy$                                                *
 *                                                                           *
\*===========================================================================*/

#ifndef HEXAHEDRALMESHTOPOLOGYKERNEL_HH
#define HEXAHEDRALMESHTOPOLOGYKERNEL_HH

#include <set>

48
#include "../Core/TopologyKernel.hh"
49
50
51
52
53
#include "HexahedralMeshIterators.hh"

namespace OpenVolumeMesh {

/**
Mike Kremer's avatar
Mike Kremer committed
54
55
56
 * \class HexahedralMeshTopologyKernel
 *
 * \brief A data structure basing on PolyhedralMesh with specializations for hexahedra.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 *
 * The hexahedron has an induced "virtual" coordinate system. This supposes
 * the incident half-faces to be given in a specific order.
 * See the following figure for an illustration of the induced
 * coordinate system.
 *
 * \image html induced_coordsys.png
 *
 * The abbreviations XF, XB, etc. are short for
 *
 * \li \c XF: X-axis front face
 * \li \c XB: X-axis back face
 * \li \c YF: Y-axis front face
 * \li \c ...
 *
 * The axes refer to the intrinsic "virtual" axes of the hexahedron.
 * The incident half-faces have to be defined in the following order:
 *
 * \li \c 1. XF
 * \li \c 2. XB
 * \li \c 3. YF
 * \li \c 4. YB
 * \li \c 5. ZF
 * \li \c 6. ZB
 */

83
class HexahedralMeshTopologyKernel : public TopologyKernel {
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
public:

    // Orientation constants
    static const unsigned char XF = 0;
    static const unsigned char XB = 1;
    static const unsigned char YF = 2;
    static const unsigned char YB = 3;
    static const unsigned char ZF = 4;
    static const unsigned char ZB = 5;
    static const unsigned char INVALID = 6;

    static inline unsigned char opposite_orientation(const unsigned char _d) {
        return (_d % 2 == 0 ? _d + 1 : _d - 1);
    }

    // Constructor
    HexahedralMeshTopologyKernel();

    // Destructor
    ~HexahedralMeshTopologyKernel();

    // Overridden function
    virtual FaceHandle add_face(const std::vector<HalfEdgeHandle>& _halfedges, bool _topologyCheck = true);

    // Overridden function
    virtual FaceHandle add_face(const std::vector<VertexHandle>& _vertices);

    /// Overridden function
    virtual CellHandle add_cell(const std::vector<HalfFaceHandle>& _halffaces, bool _topologyCheck = true,
            bool _reorderFaces = false);

    // ======================= Specialized Iterators =============================

117
118
119
    friend class CellSheetCellIter;
    friend class HalfFaceSheetHalfFaceIter;
    friend class OutsideNeighborHalfFaceIter;
120

121
122
123
    typedef class CellSheetCellIter CellSheetCellIter;
    typedef class HalfFaceSheetHalfFaceIter HalfFaceSheetHalfFaceIter;
    typedef class OutsideNeighborHalfFaceIter OutsideNeighborHalfFaceIter;
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

    CellSheetCellIter csc_iter(const CellHandle& _ref_h, const unsigned char _orthDir) const {
        return CellSheetCellIter(_ref_h, _orthDir, this);
    }

    HalfFaceSheetHalfFaceIter hfshf_iter(const HalfFaceHandle& _ref_h) const {
        return HalfFaceSheetHalfFaceIter(_ref_h, this);
    }

    OutsideNeighborHalfFaceIter onhf_iter(const HalfFaceHandle& _ref_h) const {
        return OutsideNeighborHalfFaceIter(_ref_h, this);
    }

    // ======================= Connectivity functions =============================

    inline HalfFaceHandle opposite_halfface_handle_in_cell(const HalfFaceHandle& _hfh, const CellHandle& _ch) {

141
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
142
143
144
145
146
147
148
149

        if(orientation(_hfh, _ch) == XF) return xback_halfface(_ch);
        if(orientation(_hfh, _ch) == XB) return xfront_halfface(_ch);
        if(orientation(_hfh, _ch) == YF) return yback_halfface(_ch);
        if(orientation(_hfh, _ch) == YB) return yfront_halfface(_ch);
        if(orientation(_hfh, _ch) == ZF) return zback_halfface(_ch);
        if(orientation(_hfh, _ch) == ZB) return zfront_halfface(_ch);

150
        return TopologyKernel::InvalidHalfFaceHandle;
151
152
153
154
    }

    inline HalfFaceHandle xfront_halfface(const CellHandle& _ch) const {

155
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
156

157
        return TopologyKernel::cell(_ch).halffaces()[XF];
158
159
160
161
    }

    inline HalfFaceHandle xback_halfface(const CellHandle& _ch) const {

162
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
163

164
        return TopologyKernel::cell(_ch).halffaces()[XB];
165
166
167
168
    }

    inline HalfFaceHandle yfront_halfface(const CellHandle& _ch) const {

169
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
170

171
        return TopologyKernel::cell(_ch).halffaces()[YF];
172
173
174
175
    }

    inline HalfFaceHandle yback_halfface(const CellHandle& _ch) const {

176
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
177

178
        return TopologyKernel::cell(_ch).halffaces()[YB];
179
180
181
182
    }

    inline HalfFaceHandle zfront_halfface(const CellHandle& _ch) const {

183
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
184

185
        return TopologyKernel::cell(_ch).halffaces()[ZF];
186
187
188
189
    }

    inline HalfFaceHandle zback_halfface(const CellHandle& _ch) const {

190
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
191

192
        return TopologyKernel::cell(_ch).halffaces()[ZB];
193
194
195
196
    }

    unsigned char orientation(const HalfFaceHandle& _hfh, const CellHandle& _ch) const {

197
        assert((unsigned int)_ch < TopologyKernel::cells_.size());
198

199
        std::vector<HalfFaceHandle> halffaces = TopologyKernel::cell(_ch).halffaces();
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        for(unsigned int i = 0; i < halffaces.size(); ++i) {
            if(halffaces[i] == _hfh) return (unsigned char)i;
        }

        return INVALID;
    }

    static inline unsigned char orthogonal_orientation(const unsigned char _o1, const unsigned char _o2) {

        if(_o1 == XF && _o2 == YF) return ZF;
        if(_o1 == XF && _o2 == YB) return ZB;
        if(_o1 == XF && _o2 == ZF) return YB;
        if(_o1 == XF && _o2 == ZB) return YF;
        if(_o1 == XB && _o2 == YF) return ZB;
        if(_o1 == XB && _o2 == YB) return ZF;
        if(_o1 == XB && _o2 == ZF) return YF;
        if(_o1 == XB && _o2 == ZB) return YB;

        if(_o1 == YF && _o2 == XF) return ZB;
        if(_o1 == YF && _o2 == XB) return ZF;
        if(_o1 == YF && _o2 == ZF) return XF;
        if(_o1 == YF && _o2 == ZB) return XB;
        if(_o1 == YB && _o2 == XF) return ZF;
        if(_o1 == YB && _o2 == XB) return ZB;
        if(_o1 == YB && _o2 == ZF) return XB;
        if(_o1 == YB && _o2 == ZB) return XF;

        if(_o1 == ZF && _o2 == YF) return XB;
        if(_o1 == ZF && _o2 == YB) return XF;
        if(_o1 == ZF && _o2 == XF) return YF;
        if(_o1 == ZF && _o2 == XB) return YB;
        if(_o1 == ZB && _o2 == YF) return XF;
        if(_o1 == ZB && _o2 == YB) return XB;
        if(_o1 == ZB && _o2 == XF) return YB;
        if(_o1 == ZB && _o2 == XB) return YF;

        return INVALID;

    }

    inline HalfFaceHandle get_oriented_halfface(const unsigned char _o, const CellHandle& _ch) const {

        if(_o == XF) return xfront_halfface(_ch);
        if(_o == XB) return xback_halfface(_ch);
        if(_o == YF) return yfront_halfface(_ch);
        if(_o == YB) return yback_halfface(_ch);
        if(_o == ZF) return zfront_halfface(_ch);
        if(_o == ZB) return zback_halfface(_ch);
248
        return TopologyKernel::InvalidHalfFaceHandle;
249
250
251
252
    }

    HalfFaceHandle adjacent_halfface_on_sheet(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

253
        if(!TopologyKernel::has_face_bottom_up_adjacencies()) {
254
            std::cerr << "No bottom-up adjacencies computed so far, could not get adjacent halfface on sheet!" << std::endl;
255
            return TopologyKernel::InvalidHalfFaceHandle;
256
257
258
259
260
261
262
        }

        HalfFaceHandle n_hf = _hfh;
        HalfEdgeHandle n_he = _heh;

        // Try the 1st way
        while(true) {
263
264
265
266
267
268
269
270
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, n_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            n_hf = TopologyKernel::opposite_halfface_handle(n_hf);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            HalfEdgeHandle o_he = TopologyKernel::opposite_halfedge_handle(n_he);
            if(o_he == TopologyKernel::InvalidHalfEdgeHandle) break;
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, o_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
271
272
273
            else return n_hf;
        }

274
275
        n_hf = TopologyKernel::opposite_halfface_handle(_hfh);
        n_he = TopologyKernel::opposite_halfedge_handle(_heh);
276
277
278

        // Try the 2nd way
        while(true) {
279
280
281
282
283
284
285
286
287
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, n_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            n_hf = TopologyKernel::opposite_halfface_handle(n_hf);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            HalfEdgeHandle o_he = TopologyKernel::opposite_halfedge_handle(n_he);
            if(o_he == TopologyKernel::InvalidHalfEdgeHandle) break;
            n_hf = TopologyKernel::adjacent_halfface_in_cell(n_hf, o_he);
            if(n_hf == TopologyKernel::InvalidHalfFaceHandle) break;
            else return TopologyKernel::opposite_halfface_handle(n_hf);
288
289
        }

290
        return TopologyKernel::InvalidHalfFaceHandle;
291
292
293
294
    }

    HalfFaceHandle adjacent_halfface_on_surface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

295
        for(OpenVolumeMesh::HalfEdgeHalfFaceIter hehf_it = TopologyKernel::hehf_iter(_heh);
296
297
                hehf_it.valid(); ++hehf_it) {
            if(*hehf_it == _hfh) continue;
298
            if(TopologyKernel::is_boundary(*hehf_it)) {
299
300
                return *hehf_it;
            }
301
302
            if(TopologyKernel::is_boundary(TopologyKernel::opposite_halfface_handle(*hehf_it))) {
                return TopologyKernel::opposite_halfface_handle(*hehf_it);
303
304
            }
        }
305
        return TopologyKernel::InvalidHalfFaceHandle;
306
307
308
309
    }

    HalfFaceHandle neighboring_outside_halfface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh) const {

310
        if(!TopologyKernel::has_face_bottom_up_adjacencies()) {
311
            std::cerr << "No bottom-up adjacencies computed so far, could not get neighboring outside halfface!" << std::endl;
312
            return TopologyKernel::InvalidHalfFaceHandle;
313
314
        }

315
        for(OpenVolumeMesh::HalfEdgeHalfFaceIter hehf_it = TopologyKernel::hehf_iter(_heh);
316
317
                hehf_it; ++hehf_it) {
            if(*hehf_it == _hfh) continue;
318
319
320
            if(TopologyKernel::is_boundary(*hehf_it)) return *hehf_it;
            if(TopologyKernel::is_boundary(TopologyKernel::opposite_halfface_handle(*hehf_it)))
                return TopologyKernel::opposite_halfface_handle(*hehf_it);
321
322
        }

323
        return TopologyKernel::InvalidHalfFaceHandle;
324
325
326
327
328
329
330
331
332
333
334
335
    }

private:

    const HalfFaceHandle& get_adjacent_halfface(const HalfFaceHandle& _hfh, const HalfEdgeHandle& _heh,
            const std::vector<HalfFaceHandle>& _halffaces) const;

};

} // Namespace OpenVolumeMesh

#endif /* HEXAHEDRALMESHTOPOLOGYKERNEL_HH */