Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
NeRF Dataset Loader
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Julia Berger
NeRF Dataset Loader
Commits
e40a2b5d
Commit
e40a2b5d
authored
1 year ago
by
Julia Berger
Browse files
Options
Downloads
Patches
Plain Diff
added loader for nerf's llff datasets
parent
028bb6d2
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
load_llff.py
+351
-0
351 additions, 0 deletions
load_llff.py
with
351 additions
and
0 deletions
load_llff.py
0 → 100644
+
351
−
0
View file @
e40a2b5d
import
numpy
as
np
import
os
,
imageio
from
torch.utils.data
import
Dataset
########## Code is slightly adapted from original NeRF implementation: https://github.com/bmild/nerf
########## Slightly modified version of LLFF data loading code
########## see https://github.com/Fyusion/LLFF for original
# Resizes images and saves them into a new directory in the dataset directory as images_xxx
def
_minify
(
basedir
,
factors
=
[],
resolutions
=
[]):
needtoload
=
False
for
r
in
factors
:
imgdir
=
os
.
path
.
join
(
basedir
,
'
images_{}
'
.
format
(
r
))
if
not
os
.
path
.
exists
(
imgdir
):
needtoload
=
True
for
r
in
resolutions
:
imgdir
=
os
.
path
.
join
(
basedir
,
'
images_{}x{}
'
.
format
(
r
[
1
],
r
[
0
]))
if
not
os
.
path
.
exists
(
imgdir
):
needtoload
=
True
if
not
needtoload
:
return
from
shutil
import
copy
from
subprocess
import
check_output
imgdir
=
os
.
path
.
join
(
basedir
,
'
images
'
)
imgs
=
[
os
.
path
.
join
(
imgdir
,
f
)
for
f
in
sorted
(
os
.
listdir
(
imgdir
))]
imgs
=
[
f
for
f
in
imgs
if
any
([
f
.
endswith
(
ex
)
for
ex
in
[
'
JPG
'
,
'
jpg
'
,
'
png
'
,
'
jpeg
'
,
'
PNG
'
]])]
imgdir_orig
=
imgdir
wd
=
os
.
getcwd
()
for
r
in
factors
+
resolutions
:
if
isinstance
(
r
,
int
):
name
=
'
images_{}
'
.
format
(
r
)
resizearg
=
'
{}%
'
.
format
(
100.
/
r
)
else
:
name
=
'
images_{}x{}
'
.
format
(
r
[
1
],
r
[
0
])
resizearg
=
'
{}x{}
'
.
format
(
r
[
1
],
r
[
0
])
imgdir
=
os
.
path
.
join
(
basedir
,
name
)
if
os
.
path
.
exists
(
imgdir
):
continue
print
(
'
Minifying
'
,
r
,
basedir
)
os
.
makedirs
(
imgdir
)
check_output
(
'
cp {}/* {}
'
.
format
(
imgdir_orig
,
imgdir
),
shell
=
True
)
ext
=
imgs
[
0
].
split
(
'
.
'
)[
-
1
]
args
=
'
'
.
join
([
'
mogrify
'
,
'
-resize
'
,
resizearg
,
'
-format
'
,
'
png
'
,
'
*.{}
'
.
format
(
ext
)])
print
(
args
)
os
.
chdir
(
imgdir
)
check_output
(
args
,
shell
=
True
)
os
.
chdir
(
wd
)
if
ext
!=
'
png
'
:
check_output
(
'
rm {}/*.{}
'
.
format
(
imgdir
,
ext
),
shell
=
True
)
print
(
'
Removed duplicates
'
)
print
(
'
Done
'
)
def
_load_data
(
basedir
,
factor
=
None
,
width
=
None
,
height
=
None
,
load_imgs
=
True
):
poses_arr
=
np
.
load
(
os
.
path
.
join
(
basedir
,
'
poses_bounds.npy
'
))
poses
=
poses_arr
[:,
:
-
2
].
reshape
([
-
1
,
3
,
5
]).
transpose
([
1
,
2
,
0
])
bds
=
poses_arr
[:,
-
2
:].
transpose
([
1
,
0
])
img0
=
[
os
.
path
.
join
(
basedir
,
'
images
'
,
f
)
for
f
in
sorted
(
os
.
listdir
(
os
.
path
.
join
(
basedir
,
'
images
'
)))
\
if
f
.
endswith
(
'
JPG
'
)
or
f
.
endswith
(
'
jpg
'
)
or
f
.
endswith
(
'
png
'
)][
0
]
sh
=
imageio
.
imread
(
img0
).
shape
sfx
=
''
if
factor
is
not
None
:
sfx
=
'
_{}
'
.
format
(
factor
)
_minify
(
basedir
,
factors
=
[
factor
])
factor
=
factor
elif
height
is
not
None
:
factor
=
sh
[
0
]
/
float
(
height
)
width
=
int
(
sh
[
1
]
/
factor
)
_minify
(
basedir
,
resolutions
=
[[
height
,
width
]])
sfx
=
'
_{}x{}
'
.
format
(
width
,
height
)
elif
width
is
not
None
:
factor
=
sh
[
1
]
/
float
(
width
)
height
=
int
(
sh
[
0
]
/
factor
)
_minify
(
basedir
,
resolutions
=
[[
height
,
width
]])
sfx
=
'
_{}x{}
'
.
format
(
width
,
height
)
else
:
factor
=
1
imgdir
=
os
.
path
.
join
(
basedir
,
'
images
'
+
sfx
)
if
not
os
.
path
.
exists
(
imgdir
):
print
(
imgdir
,
'
does not exist, returning
'
)
return
imgfiles
=
[
os
.
path
.
join
(
imgdir
,
f
)
for
f
in
sorted
(
os
.
listdir
(
imgdir
))
if
f
.
endswith
(
'
JPG
'
)
or
f
.
endswith
(
'
jpg
'
)
or
f
.
endswith
(
'
png
'
)]
if
poses
.
shape
[
-
1
]
!=
len
(
imgfiles
):
print
(
'
Mismatch between imgs {} and poses {} !!!!
'
.
format
(
len
(
imgfiles
),
poses
.
shape
[
-
1
])
)
return
sh
=
imageio
.
imread
(
imgfiles
[
0
]).
shape
poses
[:
2
,
4
,
:]
=
np
.
array
(
sh
[:
2
]).
reshape
([
2
,
1
])
poses
[
2
,
4
,
:]
=
poses
[
2
,
4
,
:]
*
1.
/
int
(
factor
)
if
not
load_imgs
:
return
poses
,
bds
def
imread
(
f
):
#if f.endswith('png'):
# return imageio.imread(f, ignoregamma=True)
#else:
# return imageio.imread(f)
return
imageio
.
imread
(
f
)
imgs
=
imgs
=
[
imread
(
f
)[...,:
3
]
/
255.
for
f
in
imgfiles
]
imgs
=
np
.
stack
(
imgs
,
-
1
)
print
(
'
Loaded image data
'
,
imgs
.
shape
,
poses
[:,
-
1
,
0
])
return
poses
,
bds
,
imgs
def
normalize
(
x
):
return
x
/
np
.
linalg
.
norm
(
x
)
def
viewmatrix
(
z
,
up
,
pos
):
vec2
=
normalize
(
z
)
vec1_avg
=
up
vec0
=
normalize
(
np
.
cross
(
vec1_avg
,
vec2
))
vec1
=
normalize
(
np
.
cross
(
vec2
,
vec0
))
m
=
np
.
stack
([
vec0
,
vec1
,
vec2
,
pos
],
1
)
return
m
def
ptstocam
(
pts
,
c2w
):
tt
=
np
.
matmul
(
c2w
[:
3
,:
3
].
T
,
(
pts
-
c2w
[:
3
,
3
])[...,
np
.
newaxis
])[...,
0
]
return
tt
def
poses_avg
(
poses
):
hwf
=
poses
[
0
,
:
3
,
-
1
:]
center
=
poses
[:,
:
3
,
3
].
mean
(
0
)
vec2
=
normalize
(
poses
[:,
:
3
,
2
].
sum
(
0
))
up
=
poses
[:,
:
3
,
1
].
sum
(
0
)
c2w
=
np
.
concatenate
([
viewmatrix
(
vec2
,
up
,
center
),
hwf
],
1
)
return
c2w
def
render_path_spiral
(
c2w
,
up
,
rads
,
focal
,
zdelta
,
zrate
,
rots
,
N
):
render_poses
=
[]
rads
=
np
.
array
(
list
(
rads
)
+
[
1.
])
hwf
=
c2w
[:,
4
:
5
]
for
theta
in
np
.
linspace
(
0.
,
2.
*
np
.
pi
*
rots
,
N
+
1
)[:
-
1
]:
c
=
np
.
dot
(
c2w
[:
3
,:
4
],
np
.
array
([
np
.
cos
(
theta
),
-
np
.
sin
(
theta
),
-
np
.
sin
(
theta
*
zrate
),
1.
])
*
rads
)
z
=
normalize
(
c
-
np
.
dot
(
c2w
[:
3
,:
4
],
np
.
array
([
0
,
0
,
-
focal
,
1.
])))
render_poses
.
append
(
np
.
concatenate
([
viewmatrix
(
z
,
up
,
c
),
hwf
],
1
))
return
render_poses
def
recenter_poses
(
poses
):
poses_
=
poses
+
0
bottom
=
np
.
reshape
([
0
,
0
,
0
,
1.
],
[
1
,
4
])
c2w
=
poses_avg
(
poses
)
c2w
=
np
.
concatenate
([
c2w
[:
3
,:
4
],
bottom
],
-
2
)
bottom
=
np
.
tile
(
np
.
reshape
(
bottom
,
[
1
,
1
,
4
]),
[
poses
.
shape
[
0
],
1
,
1
])
poses
=
np
.
concatenate
([
poses
[:,:
3
,:
4
],
bottom
],
-
2
)
poses
=
np
.
linalg
.
inv
(
c2w
)
@
poses
poses_
[:,:
3
,:
4
]
=
poses
[:,:
3
,:
4
]
poses
=
poses_
return
poses
#####################
def
spherify_poses
(
poses
,
bds
):
p34_to_44
=
lambda
p
:
np
.
concatenate
([
p
,
np
.
tile
(
np
.
reshape
(
np
.
eye
(
4
)[
-
1
,:],
[
1
,
1
,
4
]),
[
p
.
shape
[
0
],
1
,
1
])],
1
)
rays_d
=
poses
[:,:
3
,
2
:
3
]
rays_o
=
poses
[:,:
3
,
3
:
4
]
def
min_line_dist
(
rays_o
,
rays_d
):
A_i
=
np
.
eye
(
3
)
-
rays_d
*
np
.
transpose
(
rays_d
,
[
0
,
2
,
1
])
b_i
=
-
A_i
@
rays_o
pt_mindist
=
np
.
squeeze
(
-
np
.
linalg
.
inv
((
np
.
transpose
(
A_i
,
[
0
,
2
,
1
])
@
A_i
).
mean
(
0
))
@
(
b_i
).
mean
(
0
))
return
pt_mindist
pt_mindist
=
min_line_dist
(
rays_o
,
rays_d
)
center
=
pt_mindist
up
=
(
poses
[:,:
3
,
3
]
-
center
).
mean
(
0
)
vec0
=
normalize
(
up
)
vec1
=
normalize
(
np
.
cross
([.
1
,.
2
,.
3
],
vec0
))
vec2
=
normalize
(
np
.
cross
(
vec0
,
vec1
))
pos
=
center
c2w
=
np
.
stack
([
vec1
,
vec2
,
vec0
,
pos
],
1
)
poses_reset
=
np
.
linalg
.
inv
(
p34_to_44
(
c2w
[
None
]))
@
p34_to_44
(
poses
[:,:
3
,:
4
])
rad
=
np
.
sqrt
(
np
.
mean
(
np
.
sum
(
np
.
square
(
poses_reset
[:,:
3
,
3
]),
-
1
)))
sc
=
1.
/
rad
poses_reset
[:,:
3
,
3
]
*=
sc
bds
*=
sc
rad
*=
sc
centroid
=
np
.
mean
(
poses_reset
[:,:
3
,
3
],
0
)
zh
=
centroid
[
2
]
radcircle
=
np
.
sqrt
(
rad
**
2
-
zh
**
2
)
new_poses
=
[]
for
th
in
np
.
linspace
(
0.
,
2.
*
np
.
pi
,
120
):
camorigin
=
np
.
array
([
radcircle
*
np
.
cos
(
th
),
radcircle
*
np
.
sin
(
th
),
zh
])
up
=
np
.
array
([
0
,
0
,
-
1.
])
vec2
=
normalize
(
camorigin
)
vec0
=
normalize
(
np
.
cross
(
vec2
,
up
))
vec1
=
normalize
(
np
.
cross
(
vec2
,
vec0
))
pos
=
camorigin
p
=
np
.
stack
([
vec0
,
vec1
,
vec2
,
pos
],
1
)
new_poses
.
append
(
p
)
new_poses
=
np
.
stack
(
new_poses
,
0
)
new_poses
=
np
.
concatenate
([
new_poses
,
np
.
broadcast_to
(
poses
[
0
,:
3
,
-
1
:],
new_poses
[:,:
3
,
-
1
:].
shape
)],
-
1
)
poses_reset
=
np
.
concatenate
([
poses_reset
[:,:
3
,:
4
],
np
.
broadcast_to
(
poses
[
0
,:
3
,
-
1
:],
poses_reset
[:,:
3
,
-
1
:].
shape
)],
-
1
)
return
poses_reset
,
new_poses
,
bds
def
load_llff_data
(
basedir
,
factor
=
8
,
recenter
=
True
,
bd_factor
=
.
75
,
spherify
=
False
,
path_zflat
=
False
):
poses
,
bds
,
imgs
=
_load_data
(
basedir
,
factor
=
factor
)
# factor=8 downsamples original imgs by 8x
#print('Loaded', basedir, bds.min(), bds.max())
print
(
'
Loaded
'
,
basedir
)
# Correct rotation matrix ordering and move variable dim to axis 0
poses
=
np
.
concatenate
([
poses
[:,
1
:
2
,
:],
-
poses
[:,
0
:
1
,
:],
poses
[:,
2
:,
:]],
1
)
poses
=
np
.
moveaxis
(
poses
,
-
1
,
0
).
astype
(
np
.
float32
)
imgs
=
np
.
moveaxis
(
imgs
,
-
1
,
0
).
astype
(
np
.
float32
)
images
=
imgs
bds
=
np
.
moveaxis
(
bds
,
-
1
,
0
).
astype
(
np
.
float32
)
# Rescale if bd_factor is provided
sc
=
1.
if
bd_factor
is
None
else
1.
/
(
bds
.
min
()
*
bd_factor
)
poses
[:,:
3
,
3
]
*=
sc
bds
*=
sc
if
recenter
:
poses
=
recenter_poses
(
poses
)
if
spherify
:
poses
,
render_poses
,
bds
=
spherify_poses
(
poses
,
bds
)
else
:
c2w
=
poses_avg
(
poses
)
#print('recentered', c2w.shape)
#print(c2w[:3,:4])
## Get spiral
# Get average pose
up
=
normalize
(
poses
[:,
:
3
,
1
].
sum
(
0
))
# Find a reasonable "focus depth" for this dataset
close_depth
,
inf_depth
=
bds
.
min
()
*
.
9
,
bds
.
max
()
*
5.
dt
=
.
75
mean_dz
=
1.
/
(((
1.
-
dt
)
/
close_depth
+
dt
/
inf_depth
))
focal
=
mean_dz
# Get radii for spiral path
shrink_factor
=
.
8
zdelta
=
close_depth
*
.
2
tt
=
poses
[:,:
3
,
3
]
# ptstocam(poses[:3,3,:].T, c2w).T
rads
=
np
.
percentile
(
np
.
abs
(
tt
),
90
,
0
)
c2w_path
=
c2w
N_views
=
120
N_rots
=
2
if
path_zflat
:
# zloc = np.percentile(tt, 10, 0)[2]
zloc
=
-
close_depth
*
.
1
c2w_path
[:
3
,
3
]
=
c2w_path
[:
3
,
3
]
+
zloc
*
c2w_path
[:
3
,
2
]
rads
[
2
]
=
0.
N_rots
=
1
N_views
/=
2
# Generate poses for spiral path
render_poses
=
render_path_spiral
(
c2w_path
,
up
,
rads
,
focal
,
zdelta
,
zrate
=
.
5
,
rots
=
N_rots
,
N
=
N_views
)
render_poses
=
np
.
array
(
render_poses
).
astype
(
np
.
float32
)
c2w
=
poses_avg
(
poses
)
#print('Data:')
#print(poses.shape, images.shape, bds.shape)
dists
=
np
.
sum
(
np
.
square
(
c2w
[:
3
,
3
]
-
poses
[:,:
3
,
3
]),
-
1
)
i_test
=
np
.
argmin
(
dists
)
#print('HOLDOUT view is', i_test)
images
=
images
.
astype
(
np
.
float32
)
poses
=
poses
.
astype
(
np
.
float32
)
return
images
,
poses
,
bds
,
render_poses
,
i_test
class
NeRFLLFFDataset
(
Dataset
):
def
__init__
(
self
,
basedir
,
split
=
'
train
'
,
factor
=
8
,
recenter
=
True
,
bd_factor
=
.
75
,
spherify
=
False
,
path_zflat
=
False
):
assert
split
in
{
'
train
'
,
'
test
'
},
'
Non-valid split given.
'
self
.
split
=
split
if
self
.
split
==
'
train
'
:
self
.
rgbs
,
self
.
poses
,
self
.
bds
,
_
,
_
=
load_llff_data
(
basedir
,
factor
=
factor
,
recenter
=
recenter
,
bd_factor
=
bd_factor
,
spherify
=
spherify
,
path_zflat
=
path_zflat
)
elif
self
.
split
==
'
test
'
:
_
,
_
,
self
.
bds
,
self
.
poses
,
_
=
load_llff_data
(
basedir
,
factor
=
factor
,
recenter
=
recenter
,
bd_factor
=
bd_factor
,
spherify
=
spherify
,
path_zflat
=
path_zflat
)
print
(
'
Note, that test data has no ground-truth images!
'
)
# hwf = height, width, focal
self
.
hwf
=
self
.
poses
[
0
,
:
3
,
-
1
]
self
.
poses
=
self
.
poses
[:,
:
3
,
:
4
]
def
get_hwf_bds
(
self
):
h
,
w
,
f
=
self
.
hwf
[
0
],
self
.
hwf
[
1
],
self
.
hwf
[
2
]
near
,
far
=
np
.
min
(
self
.
bds
)
*
.
9
,
np
.
max
(
self
.
bds
)
*
1.
return
h
,
w
,
f
,
near
,
far
def
__len__
(
self
):
return
self
.
poses
.
shape
[
0
]
def
__getitem__
(
self
,
idx
):
if
self
.
split
==
'
train
'
:
return
{
'
rgb
'
:
self
.
rgbs
[
idx
],
'
pose
'
:
self
.
poses
[
idx
]}
elif
self
.
split
==
'
test
'
:
return
{
'
pose
'
:
self
.
poses
[
idx
]}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment